134 research outputs found

    Carbon isotope and magnetic polarity evidence for nondepositional events within the Cambrian-Ordovician Boundary section near Dayangcha, Jilin Province, China

    Get PDF
    Carbon isotope and magnetic polarity stratigraphic results from the Cambrian-Ordovician Boundary section at Xiaoyangqiao, near Dayangcha, Jilin Province, China, in comparison to a contemporaneous section at Black Mountain, Australia, indicate strata equivalent to major portions of the Australian sequence are either absent or are restricted to highly condensed intervals. These intervals are correlative with regressive sea level events identified in Australia and western North America, suggesting regional or eustatic sea level changes strongly influenced deposition of the Xiaoyangqiao sequence. These results also suggest the Xiaoyangqiao section is unfavourable as the site of the Cambrian-Ordovician Boundary Global Stratotype Section and Point

    Chemical diffusion of fluorine in melts in the system Na2OAl2O3SiO2

    Get PDF
    The volatilization of fluorine from three melts in the system Na2OAl2O3SiO2 has been investigated at 1 atm pressure and 1200–1400°C. The melts chosen have base compositions corresponding to albite, jadeite and a peraluminous melt with 75 mole % SiO2. Melt spheres were suspended from platinum loops in a vertical tube furnace in a flow of oxygen gas, then quenched, sectioned and analysed by electron microprobe. The microprobe scans indicate that transport of fluorine to the melt-vapor interface is by binary, concentration-independent interdiffusion of fluorine and oxygen. FO interdiffusivity increases in the order albite < peraluminous < jadeite. There is no simple reciprocal relationship between FO interdiffusivity and melt viscosity. Comparison with data on high-pressure interdiffusivity of fluorine and oxygen in jadeite melt indicates that FO interdiffusivity increases with pressure from 0.001 to 10 kbar while the activation energy remains unchanged. Fluorine chemical diffusivity in albite melt is substantially lower than H2O chemical diffusivity in obsidian melts suggesting that different diffusive mechanisms are responsible for the transport of F and H2O in igneous melts. Fluorine diffuses in albite melt via an anionic exchange with oxygen whereas water probably diffuses in obsidian melt via an alkali exchange mechanism

    The Carnian Humid Episode of the late Triassic: a review

    Get PDF
    From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic Epoch. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause, remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites) shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle Eastern, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole, Carnic Alps, Austria

    Get PDF
    The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world. Detailed bulk organic carbon isotope studies show a negative base shift from − 24‰ to − 28‰ in the Latest Permian which latter value persists into the Earliest Triassic after which it decreases slightly to − 26‰. Two strongly negative peaks of > − 38‰ in the Latest Permian and a lesser peak of − 31‰ in the Early Triassic are too negative to be due to a greater proportion of more negative organic matter and must be due to very negative methane effects. The overall change to more negative values across the Bulla/Tesero boundary fits the relative rise in sea level for this transition based on the facies changes. A positive shift in organic carbon isotope values at the Late Permian Event Horizon may be due to an increase in land-derived organic detritus at this level—a feature shown by all Tethyan Permo-Triassic boundary sections though these other sections do not have the same values. Carbonate carbon isotope trends are similar in all sections dropping by 2–3 units across the Permo-Triassic boundary. Gartnerkofel carbonate oxygen values are surprisingly, considering the ubiquitous dolomitization, compatible with values elsewhere and indicate reasonable tropical temperatures of 60 °C in the Latest Permian sabkhas to 20–40 °C in the overlying marine transition beds. Increased land-derived input at the Late Permian Event Horizon may be due to offshore transport by tsunamis whose deposits have been recognized in India at this level
    corecore