19,280 research outputs found

    Omnidirectional joint Patent

    Get PDF
    Cord restraint system for pressure suit joint

    Three undescribed pathogenic Phytophthora taxa from the south-west of Western Australia

    Get PDF
    The Phytophthora culture collection of the Vegetation Health Service of the Department of Environment and Conservation of Western Australia (WA) has been re-evaluated using DNA sequencing (Burgess et al., 2009). This has revealed many undescribed taxa previously classified as known morpho-species, one of which has recently been described as P. multivora (Scott et al., 2009). The aim of this study was to describe three of these taxa, all of which occur in WA native ecosystems. They were compared with both the morphological species to which they are most similar and their closest phylogenetic relatives. In addition, the pathogenicity of these taxa was assessed in glasshouse trials

    On the negative spectrum of two-dimensional Schr\"odinger operators with radial potentials

    Full text link
    For a two-dimensional Schr\"odinger operator HαV=−Δ−αVH_{\alpha V}=-\Delta-\alpha V with the radial potential V(x)=F(∣x∣),F(r)≥0V(x)=F(|x|), F(r)\ge 0, we study the behavior of the number N−(HαV)N_-(H_{\alpha V}) of its negative eigenvalues, as the coupling parameter α\alpha tends to infinity. We obtain the necessary and sufficient conditions for the semi-classical growth N−(HαV)=O(α)N_-(H_{\alpha V})=O(\alpha) and for the validity of the Weyl asymptotic law.Comment: 13 page

    Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    Full text link
    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas for the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N_s, the fidelity is minimized by any multimode Fock state with N_s total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version. The major change from v2 is that Section IV has been re-organized, with a no-go result for target detection under high loss conditions highlighted. The last sentence of the abstract has been deleted to conform to the arXiv word limit. Please see the PDF for the full abstrac

    Local cloning of entangled states

    Full text link
    We investigate the conditions under which a set \SC of pure bipartite quantum states on a D×DD\times D system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in \SC must be full Schmidt rank and equally entangled under the GG-concurrence measure, and (ii) the set \SC can be extended to a larger clonable set generated by a finite group GG of order ∣G∣=N|G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides DD exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all DD; and (ii) local cloning of entangled qubit states with non-vanishing entanglement. In both of these cases, a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary "shift" operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher dimensional systems, we find that the resource state must be strictly more entangled than the states in \SC. All of our necessary conditions for separable operations are also necessary conditions for LOCC, since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.Comment: REVTEX 15 pages, 1 figure, minor modifications. Same as the published version. Any comments are welcome

    A Simple Algorithm for Local Conversion of Pure States

    Get PDF
    We describe an algorithm for converting one bipartite quantum state into another using only local operations and classical communication, which is much simpler than the original algorithm given by Nielsen [Phys. Rev. Lett. 83, 436 (1999)]. Our algorithm uses only a single measurement by one of the parties, followed by local unitary operations which are permutations in the local Schmidt bases.Comment: 5 pages, LaTeX, reference adde

    Multiple-copy entanglement transformation and entanglement catalysis

    Full text link
    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A \textbf{65}, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. \textbf{83}, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations.Comment: 11 pages, RevTex 4. Main results unchanged. Journal versio

    Self-organization of punishment in structured populations

    Get PDF
    Cooperation is crucial for the remarkable evolutionary success of the human species. Not surprisingly, some individuals are willing to bare additional costs in order to punish defectors. Current models assume that, once set, the fine and cost of punishment do not change over time. Here we show that relaxing this assumption by allowing players to adapt their sanctioning efforts in dependence on the success of cooperation can explain both, the spontaneous emergence of punishment, as well as its ability to deter defectors and those unwilling to punish them with globally negligible investments. By means of phase diagrams and the analysis of emerging spatial patterns, we demonstrate that adaptive punishment promotes public cooperation either through the invigoration of spatial reciprocity, the prevention of the emergence of cyclic dominance, or through the provision of competitive advantages to those that sanction antisocial behavior. Presented results indicate that the process of self-organization significantly elevates the effectiveness of punishment, and they reveal new mechanisms by means of which this fascinating and widespread social behavior could have evolved.Comment: 13 pages, 4 figures; accepted for publication in New Journal of Physic
    • …
    corecore