19,207 research outputs found
'It Depends on the Students Themselves': Independent Language Learning at an Indonesian State School
There is continuing interest in the notion of learner autonomy, both as an effective means and valid goal of a language learning curriculum. However, the concept is recognised as emanating from Western tertiary educational contexts and as open to question in different sociocultural settings. This paper reports on a study of language learning attitudes and activity among adolescents in provincial Indonesia, during their first year in junior high school. Combining questionnaire, interview and classroom observation data, the study found that even younger learners are already learning English independently of their teacher's prescriptions, both inside the classroom and outside formal school. Their openness to the increasing learning opportunities in the local environment is often not recognised in local curricula, however, which instead impose a rigid diet of language items transmitted by teachers and their textbooks and assessed in national exams. In this local context, it seems that the promotion of appropriate forms of learner autonomy is essential if the majority of school pupils are not to be frustrated in their struggle to learn English
Effects of Simulated Damage on Stability and Control Characteristics of a Fixed-wing Twin-vertical-tail Fighter Mode at Mach Numbers from 2.50 to 4.63
No abstract availabl
Extending the Research on 1:1 Technology Integration in Middle Schools: A Call for Using Institutional Theory in Educational Technology Research
In this essay, we argue institutional lenses are a vital but largely missing part of understanding how 1:1 technology programs can effect change in teaching and learning in middle schools. Indeed, while current research highlights the positive effects technology integration efforts, and 1:1 programs in particular, have on student learning and engagement, much has focused on the knowledge, skills, and beliefs of individuals or groups of actors. There is less research considering how the institutional context may impact teacher and administrator behavior regarding these and other technology-focused efforts thus limiting our ability to fully support schools and teachers in these efforts. We conclude by calling on researchers to use institutional theory to further understand and support implementation efforts and enhance outcomes for schools, teachers, and students alike
Origin of intermittent accretion-powered X-ray oscillations in neutron stars with millisecond spin periods
We have shown previously that many of the properties of persistent
accretion-powered millisecond pulsars can be understood if their X-ray emitting
areas are near their spin axes and move as the accretion rate and structure of
the inner disk vary. Here we show that this "nearly aligned moving spot model"
may also explain the intermittent accretion-powered pulsations that have been
detected in three weakly magnetic accreting neutron stars. We show that
movement of the emitting area from very close to the spin axis to about 10
degrees away can increase the fractional rms amplitude from less than about 0.5
percent, which is usually undetectable with current instruments, to a few
percent, which is easily detectable. The second harmonic of the spin frequency
usually would not be detected, in agreement with observations. The model
produces intermittently detectable oscillations for a range of emitting area
sizes and beaming patterns, stellar masses and radii, and viewing directions.
Intermittent oscillations are more likely in stars that are more compact. In
addition to explaining the sudden appearance of accretion-powered millisecond
oscillations in some neutron stars with millisecond spin periods, the model
explains why accretion-powered millisecond oscillations are relatively rare and
predicts that the persistent accretion-powered millisecond oscillations of
other stars may become undetectable for brief intervals. It suggests why
millisecond oscillations are frequently detected during the X-ray bursts of
some neutron stars but not others and suggests mechanisms that could explain
the occasional temporal association of intermittent accretion-powered
oscillations with thermonuclear X-ray bursts.Comment: 5 pages, 1 figure; includes additional discussion and updated
references; accepted for publication in ApJ
Integration effects of underwing forward- and rearward-mounted separate-flow, flow-through nacelles on a high-wing transport
An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 to 4.0 degrees to determine the integration effects of pylon-mounted underwing forward and rearward separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the installed drag of the nacelle/pylon in the rearward location was slightly less than that of the nacelle/pylon in the forward location. This reduction was due to the reduction in calculated skin friction of the nacelle/pylon configuration. In all cases the combined value of form, wave, and interference drag was excessively high. However, the configuration with the nacelle/pylon in a rearward location produced an increase in lift over that of the basic wing-body configuration
Rapid X-Ray Variability of Neutron Stars in Low-Mass Binary Systems
The dramatic discovery with the Rossi X-Ray Timing Explorer satellite of
remarkably coherent 300--1200 Hz oscillations in the X-ray brightness of
some sixteen neutron stars in low-mass binary systems has spurred theoretical
modeling of these oscillations and investigation of their implications for the
neutron stars and accretion flows in these systems. High-frequency oscillations
are observed both during thermonuclear X-ray bursts and during intervals of
accretion-powered emission and appear to be a characteristic feature of
disk-accreting neutron stars with weak magnetic fields. In this review we focus
on the high-frequency quasi-periodic oscillations (QPOs) seen in the
accretion-powered emission. We first summarize the key properties of these
kilohertz QPOs and then describe briefly the models that have been proposed to
explain them. The existing evidence strongly favors beat-frequency models. We
mention several of the difficulties encountered in applying the magnetospheric
beat-frequency model to the kilohertz QPOs. The most fully developed and
successful model is the sonic-point beat-frequency model. We describe the work
on this model in some detail. We then discuss observations that could help to
distinguish between models. We conclude by noting some of the ways in which
study of the kilohertz QPOs may advance our understanding of dense matter and
strong gravitational fields.Comment: 10 pages LaTeX including six figures, uses espcrc2.sty (included),
invited talk at "The Active X-Ray Sky", eds. L. Scarsi, H. Bradt, P. Giommi,
and F. Fior
Two-dimensional Stokes flow driven by elliptical paddles
A fast and accurate numerical technique is developed for solving the biharmonic equation in a multiply connected domain, in two dimensions. We apply the technique to the computation of slow viscous flow (Stokes flow) driven by multiple stirring rods. Previously, the technique has been
restricted to stirring rods of circular cross section; we show here how the prior method fails for noncircular rods and how it may be adapted to accommodate general rod cross sections, provided only that for each there exists a conformal mapping to a circle. Corresponding simulations of the flow are described, and their stirring properties and energy requirements are discussed briefly. In particular the method allows an accurate calculation of the flow when flat paddles are used to stir a fluid chaotically
- …