7,677 research outputs found
An interesting example for spectral invariants
In "Illinois J. of Math. {\bf 38} (1994) 653--678", the heat operator of a
Bismut superconnection for a family of generalized Dirac operators is defined
along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin
invariants of the Dirac operators were assumed greater than three times the
codimension of the foliation. It was then showed that the associated heat
operator converges to the Chern character of the index bundle of the operator.
In "J. K-Theory {\bf 1} (2008) 305--356", we improved this result by reducing
the requirement on the Novikov-Shubin invariants to one half of the
codimension. In this paper, we construct examples which show that this is the
best possible result.Comment: Third author added. Some typos corrected and some material added.
Appeared in Journal of K Theory, Volume 13, in 2014, pages 305 to 31
Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction
The electronic and vibrational density of states of a semiconducting carbon
nanotube in a crossed junction was investigated by elastic and inelastic
scanning tunneling spectroscopy. The strong radial compression of the nanotube
at the junction induces local metallization spatially confined to a few nm. The
local electronic modifications are correlated with the observed changes in the
radial breathing and G-band phonon modes, which react very sensitively to local
mechanical deformation. In addition, the experiments reveal the crucial
contribution of the image charges to the contact potential at nanotube-metal
interfaces
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
Quantum Coherence of Image-Potential States
The quantum dynamics of the two-dimensional image-potential states in front
of the Cu(100) surface is measured by scanning tunneling microscopy (STM) and
spectroscopy (STS). The dispersion relation and the momentum resolved
phase-relaxation time of the first image-potential state are determined from
the quantum interference patterns in the local density of states (LDOS) at step
edges. It is demonstrated that the tip-induced Stark shift does not affect the
motion of the electrons parallel to the surface.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 figures; corrected typos,
minor change
Kondo temperature of magnetic impurities at surfaces
Based on the experimental observation, that only the close vicinity of a
magnetic impurity at metal surfaces determines its Kondo behaviour, we
introduce a simple model which explains the Kondo temperatures observed for
cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent
agreement between the model and scanning tunneling spectroscopy (STS)
experiments is demonstrated. The Kondo temperature is shown to depend on the
occupation of the d-level determined by the hybridization between adatom and
substrate with a minimum around single occupancy.Comment: 4 pages, 2 figure
Rates of transposition in Escherichia coli
The evolutionary role of transposable elements (TEs) is still highly controversial. Two key parameters, the transposition rate (u and w, for replicative and non-replicative transposition) and the excision rate (e) are fundamental to understanding their evolution and maintenance in populations. We have estimated u, w and e for six families of TEs (including eight members: IS1, IS2, IS3, IS4, IS5, IS30, IS150 and IS186) in Escherichia coli, using a mutation accumulation (MA) experiment. In this experiment, mutations accumulate essentially at the rate at which they appear, during a period of 80 500 (1610 generations × 50 lines) generations, and spontaneous transposition events can be detected. This differs from other experiments in which insertions accumulated under strong selective pressure or over a limited genomic target. We therefore provide new estimates for the spontaneous rates of transposition and excision in E. coli. We observed 25 transposition and three excision events in 50 MA lines, leading to overall rate estimates of u ∼ 1.15 × 10(-5), w ∼ 4 × 10(-8) and e ∼ 1.08 × 10(-6) (per element, per generation). Furthermore, extensive variation between elements was found, consistent with previous knowledge of the mechanisms and regulation of transposition for the different elements.Natural Sciences and Engineering Research Council of Canada, LAO/ITQB, FCT
Extraction efficiency of drifting electrons in a two-phase xenon time projection chamber
We present a measurement of the extraction efficiency of quasi-free electrons
from the liquid into the gas phase in a two-phase xenon time-projection
chamber. The measurements span a range of electric fields from 2.4 to 7.1 kV/cm
in the liquid xenon, corresponding to 4.5 to 13.1 kV/cm in the gaseous xenon.
Extraction efficiency continues to increase at the highest extraction fields,
implying that additional charge signal may be attained in two-phase xenon
detectors through careful high-voltage engineering of the gate-anode region
A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein
The spliceosomal RNA helicase Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. Brr2 exhibits an unusual organization with tandem helicase units, each comprising dual RecA-like domains and a Sec63 homology unit, preceded by a more than 400-residue N-terminal helicase-associated region. Whereas recent crystal structures have provided insights into the molecular architecture and regulation of the Brr2 helicase region, little is known about the structural organization and function of its N-terminal part. Here, a near-atomic resolution crystal structure of a PWI-like domain that resides in the N-terminal region of Chaetomium thermophilum Brr2 is presented. CD spectroscopic studies suggested that this domain is conserved in the yeast and human Brr2 orthologues. Although canonical PWI domains act as low-specificity nucleic acid-binding domains, no significant affinity of the unusual PWI domain of Brr2 for a broad spectrum of DNAs and RNAs was detected in band-shift assays. Consistently, the C. thermophilum Brr2 PWI-like domain, in the conformation seen in the present crystal structure, lacks an expanded positively charged surface patch as observed in at least one canonical, nucleic acid-binding PWI domain. Instead, in a comprehensive yeast two-hybrid screen against human spliceosomal proteins, fragments of the N-terminal region of human Brr2 were found to interact with several other spliceosomal proteins. At least one of these interactions, with the Prp19 complex protein SPF27, depended on the presence of the PWI-like domain. The results suggest that the N-terminal region of Brr2 serves as a versatile protein-protein interaction platform in the spliceosome and that some interactions require or are reinforced by the PWI-like domain
Recommended from our members
Hypoimmunogenic Derivatives of Induced Pluripotent Stem Cells Evade Immune Rejection in Fully Immunocompetent Allogeneic Recipients
- …