7,677 research outputs found

    An interesting example for spectral invariants

    Full text link
    In "Illinois J. of Math. {\bf 38} (1994) 653--678", the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then showed that the associated heat operator converges to the Chern character of the index bundle of the operator. In "J. K-Theory {\bf 1} (2008) 305--356", we improved this result by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.Comment: Third author added. Some typos corrected and some material added. Appeared in Journal of K Theory, Volume 13, in 2014, pages 305 to 31

    Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction

    Full text link
    The electronic and vibrational density of states of a semiconducting carbon nanotube in a crossed junction was investigated by elastic and inelastic scanning tunneling spectroscopy. The strong radial compression of the nanotube at the junction induces local metallization spatially confined to a few nm. The local electronic modifications are correlated with the observed changes in the radial breathing and G-band phonon modes, which react very sensitively to local mechanical deformation. In addition, the experiments reveal the crucial contribution of the image charges to the contact potential at nanotube-metal interfaces

    Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces

    Full text link
    The Kondo temperature TKT_K of single Co adatoms on monolayers of Ag on Cu and Au(111) is determined using Scanning Tunneling Spectroscopy. TKT_K of Co on a single monolayer of Ag on either substrate is essentially the same as that of Co on a homogenous Ag(111) crystal. This gives strong evidence that the interaction of surface Kondo impurities with the substrate is very local in nature. By comparing TKT_K found for Co on Cu, Ag, and Au (111)-surfaces we show that the energy scale of the many-electron Kondo state is insensitive to the properties of surface states and to the energetic position of the projected bulk band edges.Comment: 4 pages, 3 figure

    Quantum Coherence of Image-Potential States

    Full text link
    The quantum dynamics of the two-dimensional image-potential states in front of the Cu(100) surface is measured by scanning tunneling microscopy (STM) and spectroscopy (STS). The dispersion relation and the momentum resolved phase-relaxation time of the first image-potential state are determined from the quantum interference patterns in the local density of states (LDOS) at step edges. It is demonstrated that the tip-induced Stark shift does not affect the motion of the electrons parallel to the surface.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 figures; corrected typos, minor change

    Kondo temperature of magnetic impurities at surfaces

    Full text link
    Based on the experimental observation, that only the close vicinity of a magnetic impurity at metal surfaces determines its Kondo behaviour, we introduce a simple model which explains the Kondo temperatures observed for cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent agreement between the model and scanning tunneling spectroscopy (STS) experiments is demonstrated. The Kondo temperature is shown to depend on the occupation of the d-level determined by the hybridization between adatom and substrate with a minimum around single occupancy.Comment: 4 pages, 2 figure

    Rates of transposition in Escherichia coli

    Get PDF
    The evolutionary role of transposable elements (TEs) is still highly controversial. Two key parameters, the transposition rate (u and w, for replicative and non-replicative transposition) and the excision rate (e) are fundamental to understanding their evolution and maintenance in populations. We have estimated u, w and e for six families of TEs (including eight members: IS1, IS2, IS3, IS4, IS5, IS30, IS150 and IS186) in Escherichia coli, using a mutation accumulation (MA) experiment. In this experiment, mutations accumulate essentially at the rate at which they appear, during a period of 80 500 (1610 generations × 50 lines) generations, and spontaneous transposition events can be detected. This differs from other experiments in which insertions accumulated under strong selective pressure or over a limited genomic target. We therefore provide new estimates for the spontaneous rates of transposition and excision in E. coli. We observed 25 transposition and three excision events in 50 MA lines, leading to overall rate estimates of u ∼ 1.15 × 10(-5), w ∼ 4 × 10(-8) and e ∼ 1.08 × 10(-6) (per element, per generation). Furthermore, extensive variation between elements was found, consistent with previous knowledge of the mechanisms and regulation of transposition for the different elements.Natural Sciences and Engineering Research Council of Canada, LAO/ITQB, FCT

    Extraction efficiency of drifting electrons in a two-phase xenon time projection chamber

    Full text link
    We present a measurement of the extraction efficiency of quasi-free electrons from the liquid into the gas phase in a two-phase xenon time-projection chamber. The measurements span a range of electric fields from 2.4 to 7.1 kV/cm in the liquid xenon, corresponding to 4.5 to 13.1 kV/cm in the gaseous xenon. Extraction efficiency continues to increase at the highest extraction fields, implying that additional charge signal may be attained in two-phase xenon detectors through careful high-voltage engineering of the gate-anode region

    A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein

    Get PDF
    The spliceosomal RNA helicase Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. Brr2 exhibits an unusual organization with tandem helicase units, each comprising dual RecA-like domains and a Sec63 homology unit, preceded by a more than 400-residue N-terminal helicase-associated region. Whereas recent crystal structures have provided insights into the molecular architecture and regulation of the Brr2 helicase region, little is known about the structural organization and function of its N-terminal part. Here, a near-atomic resolution crystal structure of a PWI-like domain that resides in the N-terminal region of Chaetomium thermophilum Brr2 is presented. CD spectroscopic studies suggested that this domain is conserved in the yeast and human Brr2 orthologues. Although canonical PWI domains act as low-specificity nucleic acid-binding domains, no significant affinity of the unusual PWI domain of Brr2 for a broad spectrum of DNAs and RNAs was detected in band-shift assays. Consistently, the C. thermophilum Brr2 PWI-like domain, in the conformation seen in the present crystal structure, lacks an expanded positively charged surface patch as observed in at least one canonical, nucleic acid-binding PWI domain. Instead, in a comprehensive yeast two-hybrid screen against human spliceosomal proteins, fragments of the N-terminal region of human Brr2 were found to interact with several other spliceosomal proteins. At least one of these interactions, with the Prp19 complex protein SPF27, depended on the presence of the PWI-like domain. The results suggest that the N-terminal region of Brr2 serves as a versatile protein-protein interaction platform in the spliceosome and that some interactions require or are reinforced by the PWI-like domain
    • …
    corecore