5,181 research outputs found

    Effect of the nearby levels on the resonance fluorescence spectrum of the atom-field interaction

    Full text link
    We study the resonance fluorescence in the Jaynes-Cummings model when nearby levels are taking into account. We show that the Stark shift produced by such levels generates a displacement of the peaks of the resonance fluorescence due to an induced effective detuning and also induces an asymmetry. Specific results are presented assuming a coherent and a thermal fields

    Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams

    Get PDF
    The effect of surface stress on the stiffness of cantilever beams remains an outstanding problem in the physical sciences. While numerous experimental studies report significant stiffness change due to surface stress, theoretical predictions are unable to rigorously and quantitatively reconcile these observations. In this Letter, we present the first controlled measurements of stress-induced change in cantilever stiffness with commensurate theoretical quantification. Simultaneous measurements are also performed on equivalent clamped-clamped beams. All experimental results are quantitatively and accurately predicted using elasticity theory. We also present conclusive experimental evidence for invalidity of the longstanding and unphysical axial force model, which has been widely applied to interpret measurements using cantilever beams. Our findings will be of value in the development of micro- and nanoscale resonant mechanical sensors

    Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study

    Get PDF
    Background Maternal metabolism during pregnancy is a major determinant of the intra-uterine environment and fetal outcomes. Herein, we characterize the maternal urinary metabolome throughout pregnancy to identify maternal metabolic signatures of fetal growth in two subcohorts and explain potential sources of variation in metabolic profiles based on lifestyle and clinical data. Methods We used 1H nuclear magnetic resonance (NMR) spectroscopy to characterize maternal urine samples collected in the INMA birth cohort at the first (n = 412 and n = 394, respectively, in Gipuzkoa and Sabadell cohorts) and third trimesters of gestation (n = 417 and 469). Metabolic phenotypes that reflected longitudinal intra- and inter-individual variation were used to predict measures of fetal growth and birth weight. Results A metabolic shift between the first and third trimesters of gestation was characterized by 1H NMR signals arising predominantly from steroid by-products. We identified 10 significant and reproducible metabolic associations in the third trimester with estimated fetal, birth, and placental weight in two independent subcohorts. These included branched-chain amino acids; isoleucine, valine, leucine, alanine and 3 hydroxyisobutyrate (metabolite of valine), which were associated with a significant fetal weight increase at week 34 of up to 2.4 % in Gipuzkoa (P < 0.005) and 1 % in Sabadell (P < 0.05). Other metabolites included pregnancy-related hormone by-products of estrogens and progesterone, and the methyl donor choline. We could explain a total of 48–53 % of the total variance in birth weight of which urine metabolites had an independent predictive power of 12 % adjusting for all other lifestyle/clinical factors. First trimester metabolic phenotypes could not predict reproducibly weight at later stages of development. Physical activity, as well as other modifiable lifestyle/clinical factors, such as coffee consumption, vitamin D intake, and smoking, were identified as potential sources of metabolic variation during pregnancy. Conclusions Significant reproducible maternal urinary metabolic signatures of fetal growth and birth weight are identified for the first time and linked to modifiable lifestyle factors. This novel approach to prenatal screening, combining multiple risk factors, present a great opportunity to personalize pregnancy management and reduce newborn disease risk in later life

    From circular paths to elliptic orbits: A geometric approach to Kepler's motion

    Get PDF
    The hodograph, i.e. the path traced by a body in velocity space, was introduced by Hamilton in 1846 as an alternative for studying certain dynamical problems. The hodograph of the Kepler problem was then investigated and shown to be a circle, it was next used to investigate some other properties of the motion. We here propose a new method for tracing the hodograph and the corresponding configuration space orbit in Kepler's problem starting from the initial conditions given and trying to use no more than the methods of synthetic geometry in a sort of Newtonian approach. All of our geometric constructions require straight edge and compass only.Comment: 9 pages, 4 figure

    The formation heritage of Jupiter Family Comet 10P/Tempel 2 as revealed by infrared spectroscopy

    Get PDF
    We present spectral and spatial information for major volatile species in Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT 2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62 AU), following the comet's perihelion passage on UT 2010 July 04. The total production rate for water on July 26 was (1.90 +/- 0.12) x 10^28 molecules s-1, and abundances of six trace gases (relative to water) were: CH3OH (1.58% +/- 0.23), C2H6 (0.39% +/- 0.04), NH3 (0.83% +/- 0.20), and HCN (0.13% +/- 0.02). A detailed analysis of intensities for water emission lines provided a rotational temperature of 35 +/- 3 K. The mean OPR is consistent with nuclear spin populations in statistical equilibrium (OPR = 3.01 +/- 0.18), and the (1-sigma) lower bound corresponds to a spin temperature > 38 K. Our measurements were contemporaneous with a jet-like feature observed at optical wavelengths. The spatial profiles of four primary volatiles display strong enhancements in the jet direction, which favors release from a localized vent on the nucleus. The measured IR continuum is much more sharply peaked and is consistent with a dominant contribution from the nucleus itself. The peak intensities for H2O, CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the possible existence of a distributed source, such as the release of icy grains that subsequently sublimed in the coma. On UT September 18, no obvious emission lines were present in our spectra, nevertheless we obtained a 3-sigma upper limit Q(H2O) < 2.86 x 10^27 molecules s-1

    A Measurement of Water Vapour amid a Largely Quiescent Environment on Europa

    Get PDF
    Previous investigations proved the existence of local density enhancements in Europas atmosphere, advancing the idea of a possible origination from water plumes. These measurement strategies, however, were sensitive either to total absorption or atomic emissions, which limited the ability to assess the water content. Here we present direct searches for water vapour on Europa spanning dates from February 2016 to May 2017 with the Keck Observatory. Our global survey at infrared wavelengths resulted in non-detections on 16 out of 17 dates, with upper limits below the water abundances inferred from previous estimates. On one date (26 April 2016) we measured 2,095 658 tonnes of water vapour at Europas leading hemisphere. We suggest that the outgassing ls than previously estimated, with only rare localized events of stronger activity

    A Passive Phase Noise Cancellation Element

    Get PDF
    We introduce a new method for reducing phase noise in oscillators, thereby improving their frequency precision. The noise reduction device consists of a pair of coupled nonlinear resonating elements that are driven parametrically by the output of a conventional oscillator at a frequency close to the sum of the linear mode frequencies. Above the threshold for parametric response, the coupled resonators exhibit self-oscillation at an inherent frequency. We find operating points of the device for which this periodic signal is immune to frequency noise in the driving oscillator, providing a way to clean its phase noise. We present results for the effect of thermal noise to advance a broader understanding of the overall noise sensitivity and the fundamental operating limits
    corecore