2,718 research outputs found

    Ward Identities in Non-equilibrium QED

    Full text link
    We verify the QED Ward identity for the two- and three -point functions at non-equilibrium in the HTL limit. We use the Keldysh formalism of real time finite temperature field theory. We obtain an identity of the same form as the Ward identity for a set of one loop self-energy and one loop three-point vertex diagrams which are constructed from HTL effective propagators and vertices.Comment: 19 pages, RevTex, 4 PostScript figures, revised version to be published in Phys. Rev.

    The Quark-Gluon-Plasma Liquid

    Full text link
    The quark-gluon plasma close to the critical temperature is a strongly interacting system. Using strongly coupled, classical, non-relativistic plasmas as an analogy, we argue that the quark-gluon plasma is in the liquid phase. This allows to understand experimental observations in ultrarelativistic heavy-ion collisions and to interpret lattice QCD results. It also supports the indications of the presence of a strongly coupled QGP in ultrarelativistic heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.

    Large harmonic softening of the phonon density of states of uranium

    Get PDF
    Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha -phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable

    Cherenkov radiation by particles traversing the background radiatio n

    Get PDF
    High energy particles traversing the Universe through the cosmic microwave backgroung radiation can, in principle, emit Cherenkov radiation. It is shown that the energy threshold for this radiation is extremely high and its intensity would be too low due to the low density of the "relic photons gas" and very weak interaction of two photons.Comment: 6 pages, LATEX, no Figs.; to be published in JETP Lett. 75 (N4) (2002

    Covariant transport approach for strongly interacting partonic systems

    Full text link
    The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. Scalar- and vector-interaction densities are extracted from the DQPM as well as effective scalar- and vector-mean fields for the partons. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Since the dynamical quarks and antiquarks become very massive close to the phase transition, the formed resonant 'pre-hadronic' color-dipole states (qqˉq\bar{q} or qqqqqq) are of high invariant mass, too, and sequentially decay to the groundstate meson and baryon octets increasing the total entropy. When applying the PHSD approach to Pb+Pb colllisions at 158 A⋅\cdotGeV we find a significant effect of the partonic phase on the production of multi-strange antibaryons due to a slightly enhanced ssˉs{\bar s} pair production from massive time-like gluon decay and a larger formation of antibaryons in the hadronization process.Comment: 12 pages, 6 figures, to be published in the Proceedings of the 26th Winter Workshop on `Nuclear Dynamics', Ochto Rios, Jamaica, 2-9 January, 2010

    Multiparticle production in the Glasma at NLO and plasma instabilities

    Get PDF
    We discuss the relation between multi-particle production in the Glasma at next-to-leading order and the physics of plasma instabilities.Comment: 4 pages, talk at Quark Matter 200

    Wakes in the quark-gluon plasma

    Get PDF
    Using the high temperature approximation we study, within the linear response theory, the wake in the quark-gluon plasma by a fast parton owing to dynamical screening in the space like region. When the parton moves with a speed less than the average speed of the plasmon, we find that the wake structure corresponds to a screening charge cloud traveling with the parton with one sign flip in the induced charge density resulting in a Lennard-Jones type potential in the outward flow with a short range repulsive and a long range attractive part. On the other hand if the parton moves with a speed higher than that of plasmon, the wake structure in the induced charge density is found to have alternate sign flips and the wake potential in the outward flow oscillates analogous to Cerenkov like wave generation with a Mach cone structure trailing the moving parton. The potential normal to the motion of the parton indicates a transverse flow in the system. We also calculate the potential due to a color dipole and discuss consequences of possible new bound states and J/ψJ/\psi suppression in the quark-gluon plasma.Comment: 20 pages, 14 figures (high resolution figures available with authors); version accepted for publication in Phys. Rev.

    First Results from Viper: Detection of Small-Scale Anisotropy at 40 GHZ

    Get PDF
    Results of a search for small-scale anisotropy in the cosmic microwave background (CMB) are presented. Observations were made at the South Pole using the Viper telescope, with a .26 degree (FWHM) beam and a passband centered at 40 GHz. Anisotropy band-power measurements in bands centered at l = 108, 173, 237, 263, 422 and 589 are reported. Statistically significant anisotropy is detected in all bands.Comment: 5 pages, 4 figures, uses emulateapj.sty, submitted to ApJ Letter

    Microstructural strain energy of α-uranium determined by calorimetry and neutron diffractometry

    Get PDF
    The microstructural contribution to the heat capacity of α-uranium was determined by measuring the heat-capacity difference between polycrystalline and single-crystal samples from 77 to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium microstructure released (3±1) J/mol of strain energy. On further heating to 300 K, the microstructure absorbed energy as it began to redevelop microstrains. Anisotropic strain-broadening parameters were extracted from neutron-diffraction measurements on polycrystals. Combining the strain-broadening parameters with anisotropic elastic constants from the literature, the microstructural strain energy is predicted in the two limiting cases of statistically isotropic stress and statistically isotropic strain. The result calculated in the limit of statistically isotropic stress was (3.7±0.5) J/mol K at 77 K and (1±0.5) J/mol at room temperature. In the limit of statistically isotropic strain, the values were (7.8±0.5) J/mol K at 77 K and (4.5±0.5) J/mol at room temperature. In both cases the changes in the microstructural strain energy showed good agreement with the calorimetry
    • …
    corecore