164 research outputs found
Torsional Alfv\'en waves in solar partially ionized plasma: effects of neutral helium and stratification
Ion-neutral collisions may lead to the damping of Alfven waves in
chromospheric and prominence plasmas. Neutral helium atoms enhance the damping
in certain temperature interval, where the ratio of neutral helium and neutral
hydrogen atoms is increased. Therefore, the height-dependence of ionization
degrees of hydrogen and helium may influence the damping rate of Alfven waves.
We aim to study the effect of neutral helium in the damping of Alfven waves in
stratified partially ionized plasma of the solar chromosphere. We consider a
magnetic flux tube, which is expanded up to 1000 km height and then becomes
vertical due to merging with neighboring tubes, and study the dynamics of
linear torsional Alfven waves in the presence of neutral hydrogen and neutral
helium atoms. We start with three-fluid description of plasma and consequently
derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven
waves. Thin flux tube approximation allows to obtain the dispersion relation of
the waves in the lower part of tubes, while the spatial dependence of
steady-state Alfven waves is governed by Bessel type equation in the upper part
of tubes. Consecutive derivation of single-fluid MHD equations results in a new
Cowling diffusion coefficient in the presence of neutral helium which is
different from previously used one. We found that shorter-period (< 5 s)
torsional Alfven waves damp quickly in the chromospheric network due to
ion-neutral collision. On the other hand, longer-period (> 5 s) waves do not
reach the transition region as they become evanescent at lower heights in the
network cores. Propagation of torsional Alfven waves through the chromosphere
into the solar corona should be considered with caution: low-frequency waves
are evanescent due to the stratification, while high-frequency waves are damped
due to ion neutral collisions.Comment: 9 pages, 7 figures (accepted in A&A
Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach
We derive the dynamics of magnetohydrodynamic waves in two-fluid partially
ionized plasmas and to compare the results with those obtained under
single-fluid description. Two-fluid magnetohydrodynamic equations are used,
where ion-electron plasma and neutral particles are considered as separate
fluids. Dispersion relations of linear magnetohydrodynamic waves are derived
for simplest case of homogeneous medium. Frequencies and damping rates of waves
are obtained for different parameters of background plasma. We found that two-
and single-fluid descriptions give similar results for low frequency waves.
However, the dynamics of MHD waves in two-fluid approach is significantly
changed when the wave frequency becomes comparable or higher than ion-neutral
collision frequency. Alfven and fast magneto-acoustic waves attain their
maximum damping rate at particular frequencies (for example, the peak frequency
equals 2.5 ion-neutral collision frequency for 50 % of neutral Hydrogen) in
wave spectrum. The damping rates are reduced for higher frequency waves. The
new mode of slow magneto-acoustic wave appears for higher frequency branch,
which is connected to neutral hydrogen fluid. The single-fluid approach
perfectly deals with slow processes in partially ionized plasmas, but fails for
time-scales smaller than ion-neutral collision time. Therefore, two-fluid
approximation should be used for the description of relatively fast processes.
Some results of single-fluid description, for example the damping of
high-frequency Alfven waves in the solar chromosphere due to ion-neutral
collisions, should be revised in future.Comment: 8 pages, 7 figures, accepted in A&
Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere
Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected
Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation(resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromosphere and prominences enhances the efficiency of both these energy dissipation mechanisms.
A comparative study of the efficiency of MHD wave damping in solar plasmas due to collisional and viscous energy dissipation mechanisms is presented here. The damping rates are taken from Braginskii 1965 and applied to the VAL C model of the quiet Sun (Vernazza et al. 1981). These estimations show which of the mechanisms are dominant in which regions. In general the correct description of MHD wave damping requires the consideration of all energy dissipation mechanisms via the inclusion of the appropriate terms in the generalized Ohm’s law, the momentum, energy and induction equations. Specific forms of the generalized Ohm’s Law and induction equation are presented that are suitable for regions of the solar atmosphere which are
partially ionised
- …