34,206 research outputs found
Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory
Combination ranging system and mapping radar
Transmitter, radiating at a right angle to the spacecraft trajectory and intersecting the surface at a shallow angle, yields accurate radar maps of lunar or planetary surfaces. Earth based station receives the signal reflected from the planetary surface. Mapping coordinates and signal strength are produced by earth based transmitter
Magnetohydrodynamic turbulence in the solar wind
Recent work in describing the solar wind as an MHD turbulent fluid has shown that the magnetic fluctuations are adequately described as time stationary and to some extent as spatially homogeneous. Spectra of the three rugged invariants of incompressible MHD are the principal quantities used to characterize the velocity and magnetic field fluctuations. Unresolved issues concerning the existence of actively developing turbulence are discussed
Damping of high frequency waves in the solar wind
Cyclotron damping by suprathermal fluxes of protons and electrons in the interplanetary medium will greatly attenuate high frequency Alfven waves and whistler waves within distances 1 AU of the sun. Electrons with energies between 50 eV to 2 KeV are heated as a result of damping interplanetary whistler waves with frequencies 2 omega meson/2 pion 30 Hz in the frame of the solar wind. This heating may account, in part, for the observed suprathermal tail of solar wind electrons. Protons with energies approximately 50 KeV damp Alfven waves with frequencies .001 omega meson/2 pion .01 Hz. This damping mechanism may explain several features of a scatter free solar electron events and high intensity, anisotropic solar proton streams
Cluster: A fleet of four spacecraft to study plasma structures in three dimensions
The four Cluster spacecraft are spin stabilized spacecraft which are designed and built under stringent requirements as far as electromagnetic cleanliness is concerned. Conductive surfaces and low electromagnetic background noise are mandatory for accurate electric field and cold plasma measurements. The mission is implemented in collaboration between ESA and NASA. A Russian mission will be closely coordinated with Cluster
An emission mechanism for the Io-independent Jovian decameter radiation
A theory of the Io-independent decameter radiation is developed. The radiation results from excitation of the electromagnetic loss-cone instability by keV electrons, stably trapped near L = 6. The radiation is excited in Band 3 of the extraordinary mode. When the effects of refraction are estimated, it is shown that above 10 MHz radiation is beamed into the equatorial plane in a wide, but thin, conical sheet (Psi approximately equals 80 degrees). When the instability analysis is coupled with one of the octupole models of the Jovian magnetic field, the maximum convective growth of the instability occurs in the directions of the non-Io A, B, and C sources. The shape of the peak radio flux frequency spectrum is found to be a consequence of the loss cone shape of the electron distribution function
A theory of the Io phase asymmetry of the Jovian decametric radiation
An explanation of an asymmetry in the occurrence probability of the Io-dependent Jovian decametric radiation is proposed. Io generates stronger Alfven waves toward the south when it is in the northern part of the torus. This wave then generates decametric radiation in the northern ionosphere after it reflects in the southern ionosphere. The asymmetry then results from computing the propagation time of the alfven wave along this trajectory. The ray paths of the decameter radiation are calculated using a three dimensional ray tracing program in the Jovian ionosphere. Variations in the expected probability plots are computer for two models of the Jovian ionosphere and global magnetic field, as well as for several choices of the ratio of the radiated frequency to the X-mode cutoff frequency
The formation of arcs in the dynamic spectra of Jovian decameter bursts
A model is presented that can account for several features of the dynamic spectral arcs observed at decameter wavelengths by the planetary radio astronomy experiment on Voyagers 1 and 2. It is shown that refraction of an extraordinary mode wave initially excited nearly orthogonal to the local magnetic field is significantly influenced by the local plasma density, being greater the higher the density. It is assumed that the source of the decameter radiation lies along the L = 6 flux tube and that the highest frequencies are produced at the lowest altitudes, where both the plasma density and magnetic field gradients are largest. It is further assumed that the decameter radiation is emitted into a thin conical sheet, consistent with both observation and theory. In the model the emission cone angle of the sheet is chosen to vary with frequency so that it is relatively small at both high and low frequencies, but approximately 80 deg at intermediate frequencies. The resulting emission pattern as seen by a distant observer is shown to resemble the observed arc pattern. The model is compared and contrasted with examples of Voyager radio data
Bi-Directional Energy Cascades and the Origin of Kinetic Alfv\'enic and Whistler Turbulence in the Solar Wind
The observed sub-proton scale turbulence spectrum in the solar wind raises
the question of how that turbulence originates. Observations of keV energetic
electrons during solar quite-time suggest them as possible source of free
energy to drive the turbulence. Using particle-in-cell simulations, we explore
how free energy in energetic electrons, released by an electron two-stream
instability drives Weibel-like electromagnetic waves that excite wave-wave
interactions. Consequently, both kinetic Alfv\'enic and whistler waves are
excited that evolve through inverse and forward magnetic energy cascades.Comment: 12 pages, 5 figures, Submitted to Physical Review Letter
Stationarity of magnetohydrodynamic fluctuations in the solar wind
Solar wind research and studies of charged particle propagation often assume that the interplanetary magnetic field represents a stationary random process. The extent to which ensemble averages of the solar wind magnetic fields follow the asymptotic behavior predicted by the ergodic theorem was investigated. Several time periods, including a span of nearly two years, are analyzed. Data intervals which span many solar rotations satisfy the conditions of weak stationarity if the effects of solar rotation are included in the asymptotic analysis. Shorter intervals which include a small integral number of interplanetary sectors also satisfy weak stationarity. The results are illustrated using magnetometer data from the ISEE-3, Voyager and IMP spacecraft
- …