263 research outputs found
Inward and Outward Integral Equations and the KKR Method for Photons
In the case of electromagnetic waves it is necessary to distinguish between
inward and outward on-shell integral equations. Both kinds of equation are
derived. A correct implementation of the photonic KKR method then requires the
inward equations and it follows directly from them. A derivation of the KKR
method from a variational principle is also outlined. Rather surprisingly, the
variational KKR method cannot be entirely written in terms of surface integrals
unless permeabilities are piecewise constant. Both kinds of photonic KKR method
use the standard structure constants of the electronic KKR method and hence
allow for a direct numerical application. As a by-product, matching rules are
obtained for derivatives of fields on different sides of the discontinuity of
permeabilities.
Key words: The Maxwell equations, photonic band gap calculationsComment: (to appear in J. Phys. : Cond. Matter), Latex 17 pp, PRA-HEP 93/10
(exclusively English and unimportant misprints corrected
Coulomb "blockade" of Nuclear Spin Relaxation in Quantum Dots
We study the mechanism of nuclear spin relaxation in quantum dots due to the
electron exchange with 2D gas. We show that the nuclear spin relaxation rate is
dramatically affected by the Coulomb blockade and can be controlled by gate
voltage. In the case of strong spin-orbit coupling the relaxation rate is
maximal in the Coulomb blockade valleys whereas for the weak spin-orbit
coupling the maximum of the nuclear spin relaxation rate is near the Coulomb
blockade peaks.Comment: 4 pages, 3 figure
Dynamical charge inhomogeneity and crystal-field fluctuations for 4f ions in high-Tc cuprates
The main relaxation mechanism of crystal-field excitations in rare-earth ions
in cuprates is believed to be provided by the fluctuations of crystalline
electric field induced by a dynamic charge inhomogeneity generic for the doped
cuprates. We address the generalized granular model as one of the model
scenario for such an ingomogeneity where the cuprate charge subsystem remind
that of Wigner crystal with the melting transition and phonon-like positional
excitation modes. Formal description of R-ion relaxation coincides with that of
recently suggested magnetoelastic mechanism.Comment: 4 page
Electron Spin-Lattice Relaxation of Er3+ ions in Er0.01Y0.99Ba2Cu3Ox
The temperature dependence of the electron spin-lattice relaxation SLR was
studied in Er0.01Y0.99Ba2Cu3Ox compounds. The data derived from the electron
spin resonance ESR and SLR measurements were compared to those from inelastic
neutron scattering studies. SLR of Er3+ ions in the temperature range from 20 K
to 65 K can be explained by the resonant phonon relaxation process with the
involvement of the lowest excited crystalline-electric-field electronic states
of Er3+. These results are consistent with a local phase separation effects.
Possible mechanisms of the ESR line broadening at lower temperatures are
discussed. Keywords: YBCO; EPR; ESR; Electron spin-lattice relaxation time, T ;
Crystalline-electric-fieldComment: 6 pages, 4 figure
What Does The Korringa Ratio Measure?
We present an analysis of the Korringa ratio in a dirty metal, emphasizing
the case where a Stoner enhancement of the uniform susceptibilty is present. We
find that the relaxation rates are significantly enhanced by disorder, and that
the inverse problem of determining the bare density of states from a study of
the change of the Knight shift and relaxation rates with some parameter, such
as pressure, has rather constrained solutions, with the disorder playing an
important role. Some preliminary applications to the case of chemical
substitution in the RbKC family of superconductors is
presented and some other relevant systems are mentioned.Comment: 849, Piscataway, New Jersey 08855 24 June 199
Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices
We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a
viable alternative to the plane-wave method to analyze the spectrum of
electromagnetic waves in a three-dimensional periodic dielectric lattice.
Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we
reproduce the main features of the spectrum obtained by the plane wave method,
namely that for a sufficiently high dielectric contrast a full gap opens in the
spectrum between the eights and ninth bands if the dielectric constant
of spheres is lower than the dielectric constant of
the background medium. If , no gap is found in the
spectrum. The maximal value of the relative band-gap width approaches 14% in
the close-packed case and decreases monotonically as the filling fraction
decreases. The lowest dielectric contrast for which a
full gap opens in the spectrum is determined to be 8.13. Eventually, in the
case of an fcc lattice of coated spheres, we demonstrate that a suitable
coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two
figures, and a few references adde
Resonance-Induced Effects in Photonic Crystals
For the case of a simple face-centered-cubic photonic crystal of homogeneous
dielectric spheres, we examine to what extent single-sphere Mie resonance
frequencies are related to band gaps and whether the width of a gap can be
enlarged due to nearby resonances. Contrary to some suggestions, no spectacular
effects may be expected. When the dielectric constant of the spheres
is greater than the dielectric constant of the
background medium, then for any filling fraction there exists a critical
above which the lowest lying Mie resonance frequency falls inside
the lowest stop gap in the (111) crystal direction, close to its midgap
frequency. If , the correspondence between Mie
resonances and both the (111) stop gap and a full gap does not follow such a
regular pattern. If the Mie resonance frequency is close to a gap edge, one can
observe a resonance-induced widening of a relative gap width by .Comment: 14 pages, 3 figs., RevTex. For more info look at
http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm
A simple formula for the L-gap width of a face-centered-cubic photonic crystal
The width of the first Bragg's scattering peak in the (111)
direction of a face-centered-cubic lattice of air spheres can be well
approximated by a simple formula which only involves the volume averaged
and over the lattice unit cell, being the
(position dependent) dielectric constant of the medium, and the effective
dielectric constant in the long-wavelength limit approximated
by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic
behaviour of the absolute gap width for high dielectric contrast
exactly. The standard deviation steadily decreases well below
1% as increases. For example for the sphere filling
fraction and . On the interval , our
formula still approximates the absolute gap width (the relative
gap width ) with a reasonable precision, namely with a standard
deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the
close-packed case. Differences between the case of air spheres in a dielectric
and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see
http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm
ITC's strategic plan for Open Science 2021-2025:towards an open future
Open Science (OS) is an umbrella term comprising principles to increase the transparency of research. Besides Open Access to scientific articles, these principles contain public availability of reusable methods (e.g., code and tools), data, and educational materials. This document outlines a plan to achieve the transition towards OS. ITC’s Strategic Plan for OS 2021-2025 - Towards an Open Future contains five initiatives:
1.OS at ITC aims to provide guidelines and OS capacity development to address the obstacles ITC researchers encounter when doing OS.
2.The ITC Knowledge Hub will provide services and tools to access, create, and publish open research, including scientific results based on qualitative/quantitative analyses using computational workflows.
3.Open Educational Resources will be addressed by exploring options to realise Open Educational Resources at ITC and providing lecturers with guidelines and support to create them.
4.The OS Community Twente serves as an inter-disciplinary, bottom-up community to promote, learn, share, and discuss OS practices.
5.Research & Funding aims to address challenges in OS through innovative developments and user studies. A further output is to generate funding to realise the ambitious aims presented in the plan.
For a successful OS transition, the initiatives aim to address the Rewards & Recognition system, valorise Sharing & Collaboration, develop OS Knowledge & Skills, and foster Cultural change & Societal impact
Statistical Theory of Spin Relaxation and Diffusion in Solids
A comprehensive theoretical description is given for the spin relaxation and
diffusion in solids. The formulation is made in a general
statistical-mechanical way. The method of the nonequilibrium statistical
operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation
dynamics of a spin subsystem. Perturbation of this subsystem in solids may
produce a nonequilibrium state which is then relaxed to an equilibrium state
due to the interaction between the particles or with a thermal bath (lattice).
The generalized kinetic equations were derived previously for a system weakly
coupled to a thermal bath to elucidate the nature of transport and relaxation
processes. In this paper, these results are used to describe the relaxation and
diffusion of nuclear spins in solids. The aim is to formulate a successive and
coherent microscopic description of the nuclear magnetic relaxation and
diffusion in solids. The nuclear spin-lattice relaxation is considered and the
Gorter relation is derived. As an example, a theory of spin diffusion of the
nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown
that due to the dipolar interaction between host nuclear spins and impurity
spins, a nonuniform distribution in the host nuclear spin system will occur and
consequently the macroscopic relaxation time will be strongly determined by the
spin diffusion. The explicit expressions for the relaxation time in certain
physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
- …