1,431 research outputs found

    Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    Full text link
    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.Comment: 39 pages, 4 figure

    Taming the zoo of supersymmetric quantum mechanical models

    Get PDF
    We show that in many cases nontrivial and complicated supersymmetric quantum mechanical (SQM) models can be obtained from the simple model describing free dynamics in flat complex space by two operations: (i) Hamiltonian reduction and (ii) similarity transformation of the complex supercharges. We conjecture that it is true for any SQM model.Comment: final version published in JHE

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 × 106^{6} Ne, 2.2 × 106^{6} Mg, and 1.6 × 106^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays

    Properties of Heavy Secondary Fluorine Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    Precise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.9 TV based on 0.29 million events collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The fluorine spectrum deviates from a single power law above 200 GV. The heavier secondary-to-primary F/Si flux ratio rigidity dependence is distinctly different from the lighter B/O (or B/C) rigidity dependence. In particular, above 10 GV, the F/SiB/O ratio can be described by a power law Rδ with δ=0.052±0.007. This shows that the propagation properties of heavy cosmic rays, from F to Si, are different from those of light cosmic rays, from He to O, and that the secondary cosmic rays have two classes

    Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 million iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155±0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class

    The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting a unique, long-duration mission of fundamental physics research in space. The physics objectives include the precise studies of the origin of dark matter, antimatter, and cosmic rays as well as the exploration of new phenomena. Following a 16-year period of construction and testing, and a precursor flight on the Space Shuttle, AMS was installed on the ISS on May 19, 2011. In this report we present results based on 120 billion charged cosmic ray events up to multi-TeV energies. This includes the fluxes of positrons, electrons, antiprotons, protons, and nuclei. These results provide unexpected information, which cannot be explained by the current theoretical models. The accuracy and characteristics of the data, simultaneously from many different types of cosmic rays, provide unique input to the understanding of origins, acceleration, and propagation of cosmic rays

    Properties of a New Group of Cosmic Nuclei: Results from the Alpha Magnetic Spectrometer on Sodium, Aluminum, and Nitrogen

    Get PDF
    We report the properties of sodium (Na) and aluminum (Al) cosmic rays in the rigidity range 2.15 GV to 3.0 TV based on 0.46 million sodium and 0.51 million aluminum nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. We found that Na and Al, together with nitrogen (N), belong to a distinct cosmic ray group. In this group, we observe that, similar to the N flux, both the Na flux and Al flux are well described by the sums of a primary cosmic ray component (proportional to the silicon flux) and a secondary cosmic ray component (proportional to the fluorine flux). The fraction of the primary component increases with rigidity for the N, Na, and Al fluxes and becomes dominant at the highest rigidities. The Na/Si and Al/Si abundance ratios at the source, 0.036±0.003 for Na/Si and 0.103±0.004 for Al/Si, are determined independent of cosmic ray propagation

    Search for new physics with dijet angular distributions in proton-proton collisions at root S = 13 TeV

    Get PDF
    Peer reviewe

    Search for narrow resonances in dilepton mass spectra in proton-proton collisions at root s=13 TeV and combination with 8 TeV data

    Get PDF
    Peer reviewe
    corecore