280 research outputs found
A HREEL investigation of adsorption and dissociation of NO on a Rh(110) surface
The adsorption and dissociation of NO on a Rh(110) surface in the temperature range from 100 to 300 K has been studied by means of high-resolution electron energy loss (HREEL) spectroscopy. At 100 K only one adsorption state of NO, assigned to bridge-bonded NO species, is observed at the whole NO coverage range. The N-O stretching frequency of this species increases from 1560 to 1710 cm-1 with increasing NO coverage. NO decomposition, which occurs readily at temperatures above 170 K has been studied for NO coverages less than 0.3 of the saturated NO coverage at 100 K. The HREELS data have shown that the fraction of NO molecules which undergo dissociation increases with increasing temperature and with decreasing initial NO coverage. For the highest NO coverages considered (0.3 of saturation at 100 K) all NO molecules decompose at 240 K. A variety of loss features are observed in the HREEL spectra after decomposition of different amounts of NO. These HREEL data are explained on the basis of comparison with the HREEL spectra measured for oxygen, nitrogen and mixed oxygen and nitrogen layers on Rh(110). It has been established that the variety of loss features observed after dissociation of NO is due to different oxygen states on the surface. The observed effect of the dissociation products on the N-O stretching frequencies have heen discussed considering the factors that can account for the blue-shifts observed in the presence of electronegative surface modifiers
Strain relaxation in small adsorbate islands: O on W(110)
The stress-induced lattice changes in a p(1x2) ordered oxygen layer on W(110)
are measured by low-energy electron diffraction. We have observed that small
oxygen islands show a mismatch with the underlying lattice. Our results
indicate that along [1-10] the average mismatch scales inversely with the
island size as 1/L for all oxygen coverages up to 0.5 ML, while along [001] it
is significant only for the smallest oxygen islands and scales as a higher
power of the inverse island size. The behaviour along [1-10] is described by a
one-dimensional finite-size Frenkel-Kontorova model. Using this model, together
with calculated force constants, we make a quantitative estimate for the change
of surface-stress upon oxygen adsorption. The result is consistent with our
ab-initio calculations, which give a relative compressive stress of -4.72 N/m
along [1-10] and a minute relative tensile stress of 0.15 N/m along [001]. The
scaling along [001] is qualitatively explained as an effect induced by the
lattice relaxation in the [1-10] direction.Comment: 22 pages, 5 figure
Stress engineering at the nanometer scale: Two-component adlayer stripes
Spontaneously formed equilibrium nanopatterns with long-range order are
widely observed in a variety of systems, but their pronounced temperature
dependence remains an impediment to maintain such patterns away from the
temperature of formation. Here, we report on a highly ordered stress-induced
stripe pattern in a two-component, Pd-O, adsorbate monolayer on W(110),
produced at high temperature and identically preserved at lower temperatures.
The pattern shows a tunable period (down to 16 nm) and orientation, as
predicted by a continuum model theory along with the surface stress and its
anisotropy found in our DFT calculations. The control over thermal fluctuations
in the stripe formation process is based on the breaking/restoring of
ergodicity in a high-density lattice gas with long-range interactions upon
turning off/on particle exchange with a heat bath.Comment: 6 pages, 4 figure
Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence
Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal
Seeded x-ray free-electron laser generating radiation with laser statistical properties
The invention of optical lasers led to a revolution in the field of optics
and even to the creation of completely new fields of research such as quantum
optics. The reason was their unique statistical and coherence properties. The
newly emerging, short-wavelength free-electron lasers (FELs) are sources of
very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse
durations on the order of femtoseconds, and are presently considered to be
laser sources at these energies. Most existing FELs are highly spatially
coherent but in spite of their name, they behave statistically as chaotic
sources. Here, we demonstrate experimentally, by combining Hanbury Brown and
Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI
FEL-2 source does indeed behave statistically as a laser. The first steps have
been taken towards exploiting the first-order coherence of FELs, and the
present work opens the way to quantum optics experiments that strongly rely on
high-order statistical properties of the radiation.Comment: 24 pages, 10 figures, 37 reference
Spectroscopic link between adsorption site occupation and local surface chemical reactivity
In this Letter we show that sequences of adsorbate-induced shifts of surface core level (SCL) x-ray photoelectron spectra contain profound information on surface changes of electronic structure and reactivity. Energy shifts and intensity changes of time-lapsed spectral components follow simple rules, from which adsorption sites are directly determined. Theoretical calculations rationalize the results for transition metal surfaces in terms of the energy shift of the d-band center of mass and this proves that adsorbate-induced SCL shifts provide a spectroscopic measure of local surface reactivity
Oxidation of methanol on Ru catalyst: Effect of the reagents partial pressures on the catalyst oxidation state and selectivity
In situ core level photoelectron spectroscopy and mass spectrometry have been utilized to study the methanol oxidation on a model RuO2 catalyst at pressures ranging from 10-6 to 10-1 mbar. The experiments were carried out varying the O2/CH3OH molecular mixing ratio from 0.25 to 3.3 and the reaction temperature from 350 to 720 K. The Ru 3d5/2 and O 1s core level spectra were used to characterise the dynamic changes in the Ru oxidation state by exposing the oxide pre-catalyst to different reagents partial pressures and temperatures. Full oxidation to CO2 + H2O or partial oxidation to CO + H2O + H2 have been observed in the whole pressure range for specific reaction conditions, which preserve the oxide catalyst state or reduce the oxide to metallic Ru. The selective oxidation to formaldehyde is observed only at pressures in the 10-1 mbar range, catalyzed by a RuO_x surface oxide formed by partial reduction of the oxide pre-catalyst
Interaction of magnetic nanoparticles with U87MG cells studied by synchrotron radiation X-ray fluorescence techniques
International audienceSynchrotron radiation (SR) X-ray microscopy combined with X-ray fluorescence (XRF) microspectroscopy provides unique information that have pushed the frontiers of biological research, particularly when investigating intracellular mechanisms. This work reports an SR-XRF microspectroscopy investigation on the distribution and the potential toxicity of Fe 2 O 3 and CoFe 2 O 4 nanoparticles (NPs) in U87MG glioblastoma-astrocytoma cells. The U87MG cells exposed to NPs concentrations ranging from 5 to 250 mg/ml for 24 h were analyzed in order to monitor both morphological and chemical changes. The SR-XRF maps complemented with XRM absorption and phase contrast images have revealed different intracellular distribution patterns for the two nanoparticles types allowing different mechanism of toxicity to be deduced
new energy sources in situ characterisation of fuel cell and supercapacitor components complementary studies using transmission fluorescence and photoelectron microscopy and imaging
Fuel cells and supercapacitors are electrochemical devices providing efficient and pollution-free production and transformation of electricity. Notwithstanding their environmental appeal, a host of materials-science problems – chiefly related to the limited durability of crucial functional components – are hindering their widespread application. The present knowledge of the relevant materials-science notion is mostly at the macroscopic and empirical trial-and-error level and the answers to many questions require much deeper scientific understanding of the origin of degradation processes. In this regard, the development and the implementation of appropriate methods for in-situ characterization of cell components at the functionally relevant length scales is highly required. Soft X-ray spectroscopies, such as X-ray absorption spectroscopy, X-ray emission (fluorescence) spectroscopy, resonant inelastic X-ray spectroscopy and X-ray photoelectron spectroscopy have been extensively employed for ex-situ characterization of materials used in electrochemical systems. Furthermore, adding spatial resolution capabilities by implementing proper optical solutions has opened unique opportunities for monitoring material changes and mass transport events occurring at submicron length scales. The input from these methods is providing correlative information about the status of the electrode surface and of the electrode/electrolyte interface and also of the processes occurring under operation conditions
- …