396 research outputs found
Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation
Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis
International Studies of Prenatal Exposure to Polycyclic Aromatic Hydrocarbons and Fetal Growth
OBJECTIVES: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously distributed human mutagens and carcinogens. However, lack of adequate air monitoring data has limited understanding of the effects of airborne PAHs on fetal growth. To address this gap in knowledge, we examined the association between prenatal exposure to airborne PAHs and birth weight, birth length, and birth head circumference, respectively, in Krakow, Poland, and New York City (NYC). METHODS: The parallel prospective cohort studies enrolled nonsmoking, healthy, and nonoccupationally exposed women and their newborns. Personal air monitoring of pregnant women was conducted over 48 hr. To control for maternal environmental tobacco smoke (ETS) exposure, we excluded those with umbilical cord plasma cotinine concentrations > 25 ng/mL. Mean cord plasma cotinine concentrations in both ethnic groups were ≤ 0.5 ng/mL. RESULTS: Prenatal PAH exposure was 10-fold higher in Krakow than in NYC. Prenatal PAH exposure was associated with significantly reduced birth weight in both Krakow Caucasians (p < 0.01) and in NYC African Americans (p < 0.01), controlling for known and potential confounders, but not in NYC Dominicans. Within the lower exposure range common to the two cities (1.80–36.47 ng/m(3)), the effect per unit PAH exposure on birth weight was 6-fold greater for NYC African Americans than for Krakow Caucasians (p = 0.01). CONCLUSIONS: These results confirm the adverse reproductive effect of relatively low PAH concentrations in two populations and suggest increased susceptibility of NYC African Americans. Fetal growth impairment has been linked to child developmental and health problems. Thus, substantial health benefits would result from global reduction of PAH emissions
Recommended from our members
Post-Translational Regulation via Clp Protease Is Critical for Survival of Mycobacterium tuberculosis
Unlike most bacterial species, Mycobacterium tuberculosis depends on the Clp proteolysis system for survival even in in vitro conditions. We hypothesized that Clp is required for the physiologic turnover of mycobacterial proteins whose accumulation is deleterious to bacterial growth and survival. To identify cellular substrates, we employed quantitative proteomics and transcriptomics to identify the set of proteins that accumulated upon the loss of functional Clp protease. Among the set of potential Clp substrates uncovered, we were able to unambiguously identify WhiB1, an essential transcriptional repressor capable of auto-repression, as a substrate of the mycobacterial Clp protease. Dysregulation of WhiB1 turnover had a toxic effect that was not rescued by repression of whiB1 transcription. Thus, under normal growth conditions, Clp protease is the predominant regulatory check on the levels of potentially toxic cellular proteins. Our findings add to the growing evidence of how post-translational regulation plays a critical role in the regulation of bacterial physiology
Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation
Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis.</p
Recommended from our members
Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia
Microglia are myeloid cells of the central nervous system (CNS) that participate both in normal CNS function and disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia vs. myeloid and other immune cells. Out of 239 genes, 106 were enriched in microglia as compared to astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS and was also observed in human microglia. Based on this signature, we found a crucial role for TGF-β in microglial biology that included: 1) the requirement of TGF-β for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia; and 2) the absence of microglia in CNS TGF-β1 deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling which provides insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease
- …