135 research outputs found

    Development of an Interrupted Pulse Expanding Ring Test

    Get PDF
    An interrupted pulse electromagnetic (EM) expanding ring test is being developed at the University of Waterloo to study the high rate behaviour of sheet metals. In a classic EM expanding ring test, a ring is expanded radially using the forces induced on the ring by a high frequency high intensity current flowing in a nearby coil. If the driving force and the acceleration of the ring are known, then the stress-strain history of the ring can be determined. Coil currents are typically generated by large capacitor banks that produce a current discharge in the shape of a damped sinusoid. To properly determine the stress of the ring, the forces induced on the ring by the current pulse must be known, which is difficult to do in practice. The approach taken in this work is to interrupt the current by means of an exploding wire switch to eliminate the Lorentz forces and achieve a free flight condition, where the stress can be determined using only the measured velocity and density of the ring. The velocity of the rings was measured using a photon Doppler velocimeter (PDV). With this technique significant periods of free-flight were obtained, with the corresponding stressstrain data. Results for 1.5 mm sheet of AA 5182-O are presented

    Contributing Factors to the Increased Formability Observed in Electromagnetically Formed Aluminum Alloy Sheet

    Get PDF
    This paper summarizes the results of an experimental and numerical program carried out to study the formability of aluminum alloy sheet formed using electromagnetic forming (EMF). Free-formed and conical samples of AA5754 aluminum alloy sheet were studied. The experiments showed significant increases in formability for the conical samples, but no significant increase for the free-formed parts. It was found that relatively little damage growth occurred and that the failure modes of the materials changed from those observed in quasi-static forming to those observed in high hydrostatic stress environments. Numerical simulations were performed using the explicit finite element code LS-DYNA with an analytical EM force distribution. The numerical models revealed that a complex stress state is generated when the sheet interacts with the tool, which is characterized by high hydrostatic stresses that create a stress state favourable to damage suppression increasing ductility. Shear stresses and strains are also produced at impact with the die which help the material achieve additional deformation. The predicted peak strain rates for the free formed parts were on the order of 1000 s^(-1) and for the conical parts the rates are on the order of 10,000 s^(-1). Although aluminum is typically considered to be strain-rate insensitive, the strain rates predicted could be playing a role in the increased formability. The predicted strain paths for the conical samples were highly non-linear. The results from this study indicate that there is an increase in formability for AA5754 when the alloy is formed into a die using EMF. This increase in formability is due to a combination of high hydrostatic stresses, shear stresses, high strain rates, and non-linear strain paths

    Effects of Force Distribution and Rebound on Electromagnetically Formed Sheet Metal

    Get PDF
    Electromagnetic forming (EMF) is a high speed forming process that has been shown to increase the formability of aluminum alloys under certain conditions. Many authors have reported significant increases in formability; however, there is as of yet no complete understanding of the process. Obtaining a gain in formability is not the only factor that must be considered when studying EMF. The process rapidly generates significant forces which lead to the deformation of the material at very high rates. The applied forces depend on the shape of the electromagnetic coil used, which leads to force distributions that may not be ideal for forming a particular part. Once the sheet is accelerated it will travel at high speeds until it impacts the die. This high speed impact results in the sheet rebounding from the die. Both the force distribution and the rebound affect the final shape of the part. This paper presents the results of experimental and numerical study carried out to determine the effect of the force distribution and the rebound on samples of conical and "v-channel" geometry. It was found that both sample geometries are affected by the force distribution and the rebound, with the v-channel samples being considerably more affected. The results indicate that these effects must be carefully considered when EMF processes are designed

    Formability and Damage in Electromagnetically Formed AA5754 and AA6111

    Get PDF
    This paper presents the results of experiments carried out to determine the formability of AA5754 and AA6111 using electromagnetic forming (EMF), and the effect of the tool/sheet interaction on damage evolution and failure. The experiments consisted of forming 1mm sheets into conical dies of 40° and 45° side angle, using a spiral coil. The experiments showed that both alloys could successfully be formed into the 40?? die, with strains above the conventional forming limit diagram (FLD) of both alloys. Forming into the higher 45° cone resulted in failure for both materials. Metallographic analysis indicated that damage is suppressed during the forming process. Micrographs of the necked and fractured areas of the part show evidence that the materials do not fail in pure ductile fracture, but rather in what could be a combination of plastic collapse, ductile fracture and shear band fracture. The failure modes are different for each material; with the AA5754 parts failing by necking and fracture, with significant thinning at the fracture tip. The AA6111 exhibited a saw tooth pattern fractures, a crosshatch pattern of shear bands in the lower half of the part, and tears in the area close to the tip. Both areas showed evidence of shear fracture. This experimental study indicates that there is increased formability for AA5754 and AA6111 when these alloys are formed using EMF. A major factor in this increase in formability is the reduction in damage caused by the tool/sheet interaction

    Electromagnetic Forming of AZ31B Magnesium Alloy Sheet

    Get PDF
    In the first stage of this work, polycrystalline specimens of AZ31B magnesium alloy have been characterized by uniaxial tensile tests at quasi-static and dynamic strain rates at room temperature. The influence of the strain rate is outlined and experimental results were fitted to the parameters of Johnson-Cook constitutive material model. In the second stage of the present study, sheets of AZ31B magnesium alloy have been biaxially formed by electromagnetic forming using different coil and die configurations. Deformation values measured from electromagnetic formed parts are compared to the ones achieved with uniaxial tensile tests and also with the values obtained by conventional forming technologies. Finally, numerical simulations have been carried out using an alternative method for computing the electromagnetic fields in the EMF process simulation, a combination of Finite Element Method (FEM) for conductor parts and Boundary Element Method (BEM) for the surrounding air (or more generally insulators) that is being implemented into commercial code LS-DYNAÂŽ

    Evaluation and calibration of anisotropic yield criteria in shear Loading: Constraints to eliminate numerical artefacts

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.ijsolstr.2017.06.029 Š 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Many anisotropic phenomenological yield functions have been proposed in the literature in which their predictive capabilities strongly depend on the experimental calibration data as well as the calibration procedure to identify the anisotropy parameters. In this paper, emphasis is placed upon the experimental and numerical calibration procedure of anisotropic yield functions in the region of shear loading (zero hydrostatic stress with equal and opposite in-plane principal strains and stresses). Conventional anisotropic calibration procedures are shown to introduce non-physical artefacts into constitutive models which manifest as a non-zero hydrostatic stress or through-thickness strains generated under in-plane shear stress that violate the definition of the shear loading condition. To overcome this issue, a new physically necessary constraint is applied on the plastic potential to enforce equal and opposite principal strains in the shear state and correct the shear region of anisotropic yield functions. Using this necessary constraint, the widely used Yld2000-2d anisotropic yield function was calibrated using an associated flow rule for aluminum alloy sheet using published data for AA2090-T3 to demonstrate how enforcing this constraint can be readily implemented to correct the shear region of the anisotropic yield surface. Furthermore, to investigate the influence of the shear constraint, an AA7075-T6 alloy was experimentally characterized in uniaxial tension, equal-biaxial tension and shear. It was revealed that with the additional shear constraints, non-physical artefacts of plane-stress anisotropic yield functions such as Yld2000-2d can be removed during the calibration procedure. However, due to the additional shear constraints, available anisotropic models may become over-constrained and alternate yield functions with more flexibility or non-associated flow rules may be required.Honda R&D AmericasCosma InternationalAlcoa Technical CenterAutomotive Partnership CanadaOntario Research FundNatural Sciences and Engineering Research Council of CanadaCanada Research Chairs SecretariatCanada Foundation for Innovatio

    Oral versus intra‐vaginal imidazole and triazole anti‐fungal treatment of uncomplicated vulvovaginal candidiasis (thrush)

    Get PDF
    Internal sources: • Health Services Research Unit, University of Aberdeen, UK • Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Canada (Salary support for Julia Worswick) • Centre of Academic Primary Care, University of Aberdeen, UK External sources: • JMG holds a Tier 1 Canadian Research Chair in Knowledge Transfer and Uptake, Canada • MCW was funded by a Health Foundation Improvement Science Fellowship and the University of Strathclyde, UK • The Health Services Research Unit is funded by the Chief Scientist ODice, Scottish Executive Health Department, UK • The Health Economic Research Unit is funded by the Chief Scientist ODice, Scottish Executive Health Department, UKPeer reviewedPublisher PD

    A New Model for Void Coalescence by Internal Necking

    Get PDF
    A micromechanical model for predicting the strain increment required to bring a damaged material element from the onset of void coalescence up to final fracture is developed based on simple kinematics arguments. This strain increment controls the unloading slope and the energy dissipated during the final step of material failure. Proper prediction of the final drop of the load carrying capacity is an important ingredient of any ductile fracture model, especially at high stress triaxiality. The model has been motivated and verified by comparison to a large set of finite element void cell calculations.

    Wage returns to mid-career investments in job training through employer supported course enrollment: evidence for Canada

    Get PDF
    Using longitudinal data for Canada, we analyze the incidence and wage returns to employer supported course enrollment for men and women. Availability of confidential data, along with a relatively rich set of observable covariates, lead us to the estimation of difference-in-differences matching models of the effect of employer supported course enrolment on wages. The estimated average treatment effects on the treated range from 5.5 to 7.2 percent for men and 7.1 to 9.0 for women. While high-skilled workers show disproportionately higher rates of participation in employer-supported training, we observe no wage premiums for these types of workers. Statistically significant positive wage returns are found, on the other hand, for low-skilled workers. JEL codes: C14, I20, J24, J31, M5
    • …
    corecore