151 research outputs found

    Universal Ratios in the 2-D Tricritical Ising Model

    Get PDF
    We consider the universality class of the two-dimensional Tricritical Ising Model. The scaling form of the free-energy naturally leads to the definition of universal ratios of critical amplitudes which may have experimental relevance. We compute these universal ratios by a combined use of results coming from Perturbed Conformal Field Theory, Integrable Quantum Field Theory and numerical methods.Comment: 4 pages, LATEX fil

    Blocking Zika virus vertical transmission.

    Get PDF
    The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity

    Biomechanical evaluation of fixation of comminuted olecranon fractures: one-third tubular versus locking compression plating

    Get PDF
    New concepts in plate fixation have led to an evolution in plate design for olecranon fractures. The purpose of this study was to compare the stiffness and strength of locking compression plate (LCP) fixation to one-third tubular plate fixation in a cadaveric comminuted olecranon fracture model with a standardised osteotomy. Five matched pairs of cadaveric elbows were randomly assigned for fixation by either a contoured LCP combined with an intramedullary screw and unicortical locking screws or a one-third tubular plate combined with bicortical screws. Construct stiffness was measured by subjecting the specimens to cyclic loading while measuring gapping at the osteotomy site. Construct strength was measured by subjecting specimens to ramp load until failure. There was no significant difference in fixation stiffness and strength between the two fixation methods. All failures consisted of failure of the bone and not of the hardware. Contoured LCP and intramedullary screw fixation can be used as an alternative treatment method for comminuted olecranon fractures as its stiffness and strength were not significantly different from a conventional plating techniqu

    Treatment of distal humeral fractures using conventional implants. Biomechanical evaluation of a new implant configuration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the face of costly fixation hardware with varying performance for treatment of distal humeral fractures, a novel technique (U-Frame) is proposed using conventional implants in a 180° plate arrangement. In this in-vitro study the biomechanical stability of this method was compared with the established technique which utilizes angular stable locking compression plates (LCP) in a 90° configuration.</p> <p>Methods</p> <p>An unstable distal 3-part fracture (AO 13-C2.3) was created in eight pairs of human cadaveric humeri. All bone pairs were operated with either the "Frame" technique, where two parallel plates are distally interconnected, or with the LCP technique. The specimens were cyclically loaded in simulated flexion and extension of the arm until failure of the construct occurred. Motion of all fragments was tracked by means of optical motion capturing. Construct stiffness and cycles to failure were identified for all specimens.</p> <p>Results</p> <p>Compared to the LCP constructs, the "Frame" technique revealed significant higher construct stiffness in extension of the arm (P = 0.01). The stiffness in flexion was not significantly different (P = 0.16). Number of cycles to failure was found significantly larger for the "Frame" technique (P = 0.01).</p> <p>Conclusions</p> <p>In an in-vitro context the proposed method offers enhanced biomechanical stability and at the same time significantly reduces implant costs.</p

    Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain

    Get PDF
    Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of μ-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 μg Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development

    Convergence of Free Energy Profile of Coumarin in Lipid Bilayer

    Get PDF
    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from “pulling” coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives
    corecore