36,922 research outputs found
Effectiveness of nurse home-visiting for disadvantaged families: results of a natural experiment
Extent: 9p.Objective: To evaluate the effects of a postnatal home-visiting programme delivered by community health nurses to socially disadvantaged mothers in South Australia. Design: The intervention group of 428 mothers lived in metropolitan Adelaide and the comparison group of 239 mothers lived in regional towns where the programme was not yet available. All participating mothers met health service eligibility criteria for enrolment in the home-visiting programme. Participants in both groups were assessed at baseline (mean child age=14.4â
weeks SD=2.3), prior to programme enrolment, and again when the children were aged 9, 18 and 24â
months. Setting: State-wide community child health service. Participants: 667 socially disadvantaged mothers enrolled consecutively. 487 mothers (73%) completed the 24-month assessment. Intervention: Two-year postnatal home-visiting programme based on the Family Partnership Model. Primary outcome measures: Parent Stress Index (PSI), Kessler Psychological Distress Scale and the Ages and Stages Questionnaire. Results: Mixed models adjusting for baseline differences were used to compare outcomes in the two groups. The mothers in the home-visiting group reported greater improvement on the PSI subscales assessing a mother's perceptions on the quality of their relationship with their child (1.10, 95% CI 0.06 to 2.14) and satisfaction with their role as parents (0.46, 95% CI â0.15 to 1.07) than mothers in the comparison group. With the exception of childhood sleeping problems, there were no other significant differences in the outcomes across the two groups. Conclusions: The findings suggest that home-visiting programmes delivered by community health nurses as part of routine clinical practice have the potential to improve maternalâchild relationships and help mothers adjust to their role as parents.Michael Gifford Sawyer, Linda Frost, Kerrie Bowering, John Lync
Aerosol studies in mid-latitude coastal environments in Australia
The results of the evaluation of several inversion procedures that were used to select one which provides the most accurate atmospheric extinction profiles for small aerosol extinction coefficients (that often predominate in the maritime airmass) are presented. Height profiles of atmospheric extinction calculated by a two component atmospheric solution to the LIDAR equation will be compared with corresponding in-situ extinction profiles based on the size distribution profiles obtained in Western Australia. Values of the aerosol backscatter to extinction ratio obtained from multi-angle LIDAR measurements will be used in this solution
Adaptive evolution of molecular phenotypes
Molecular phenotypes link genomic information with organismic functions,
fitness, and evolution. Quantitative traits are complex phenotypes that depend
on multiple genomic loci. In this paper, we study the adaptive evolution of a
quantitative trait under time-dependent selection, which arises from
environmental changes or through fitness interactions with other co-evolving
phenotypes. We analyze a model of trait evolution under mutations and genetic
drift in a single-peak fitness seascape. The fitness peak performs a
constrained random walk in the trait amplitude, which determines the
time-dependent trait optimum in a given population. We derive analytical
expressions for the distribution of the time-dependent trait divergence between
populations and of the trait diversity within populations. Based on this
solution, we develop a method to infer adaptive evolution of quantitative
traits. Specifically, we show that the ratio of the average trait divergence
and the diversity is a universal function of evolutionary time, which predicts
the stabilizing strength and the driving rate of the fitness seascape. From an
information-theoretic point of view, this function measures the
macro-evolutionary entropy in a population ensemble, which determines the
predictability of the evolutionary process. Our solution also quantifies two
key characteristics of adapting populations: the cumulative fitness flux, which
measures the total amount of adaptation, and the adaptive load, which is the
fitness cost due to a population's lag behind the fitness peak.Comment: Figures are not optimally displayed in Firefo
Impact of the Spruce Budworm (Lepidoptera: Tortricidae) on the Ottawa and Hiawatha National Forests, 1978-1980
The Michigan Impact Plot System was established during 1978 and 1979 to obtain a data base for quantifying the impact of the spruce budworm in the Ottawa and Hiawatha National Forests. The formulae used to estimate the mean, total, and associated standard errors of the various parameters at the national forest and forest district levels are presented. We present the 1978, 1979, and 1980 impact data for the following parameters; percent mortality, total dead volume. dead volume per ha, live volume per ha, defoliation ranking, frequency and extent of top-kill, and incidence of spruce budworm feeding on saplings and regenera- tion. Statistics from an annual inventory of 108 composite ground sampling units (CGSU) in 1978, and 136 CGSU\u27s in 1979 and 1980 provide a more precise estimate ofthe impact of the spruce budworm in Michigan\u27s Upper Peninsula than ha~ been available to date
Gas Sorption and Luminescence Properties of a Terbium(III)-Phosphine Oxide Coordination Material with Two-Dimensional Pore Topology
The structure, stability, gas sorption properties and luminescence behaviour of a new lanthanide-phosphine oxide coordination material are reported. The polymer PCM-15 is based on Tb(III) and tris(p-carboxylated) triphenylphosphine oxide and has a 5,5-connected net topology. It exhibits an infinite three-dimensional structure that incorporates an open, two-dimensional pore structure. The material is thermally robust and remains crystalline under high vacuum at 150 degrees C. When desolvated, the solid has a CO2 BET surface area of 1187 m(2) g(-1) and shows the highest reported uptake of both O-2 and H-2 at 77 K and 1 bar for a lanthanide-based coordination polymer. Isolated Tb(III) centres in the as-synthesized polymer exhibit moderate photoluminescence. However, upon removal of coordinated OH2 ligands, the luminescence intensity was found to approximately double; this process was reversible. Thus, the Tb(III) centre was used as a probe to detect directly the desolvation and resolvation of the polymer.Welch Foundation F-1738, F-1631National Science Foundation 0741973, CHE-0847763Chemistr
Results of 1/4-Scale Experiments. Vapor Simulant And Liquid Jet A Tests
A quarter-scale engineering model of the center wing tank (CWT) of a 747-100 was constructed. This engineering model replicated the compartmentalization, passageways, and venting to the atmosphere. The model was designed to scale the fluid dynamical and combustion aspects of the explosion, not the structural failure of the beams or spars. The effect of structural failure on combustion was examined by using model beams and spars with deliberately engineered weak connections to the main tank structure. The model was filled with a simulant fuel (a mixture of propane and hydrogen) and ignited with a hot wire. The simulant fuel was chosen on the basis of laboratory testing to model the combustion characteristics (pressure rise and flame speed) of Jet A vapor created by a Jet A liquid layer at 50C at an altitude of 13.8 kft.
A series of experiments was carried out in this model in order to: (a) investigate combustion in a CWT geometry; and (b) provide guidance to the TWA 800 crash investigation. The results of the experiments were observed with high-speed film, video, and still cameras, fast and slow pressure sensors, thermocouples, photodetectors, and motion sensors. A special pseudo-schlieren system was used to visualize flame propagation within the tank. This report describes the test program, facility, instrumentation, the first 30 experiments, comparisons between experiments, and performance of the instrumentation; then examines the significance of these results to the TWA 800 crash investigation.
The key results of this study are:
Flame Motion: The motion of flame was dominated by the effects of turbulence created by jetting through the passageways and vent stringers. A very rapid combustion event (lasting 10 to 20 ms) occurred once the flame traveled outside of the ignition bay and interacted with the turbulent flow. Most of the gas within the tank was burned during this rapid event.
Compartments: The combustion time decreased with an increasing number of compartments (bays) within the tank. With six bays, combustion took only 100 to 150 ms to be completed from the time of ignition until the end of the rapid combustion phase. The total combustion event was three to four times shorter with compartments than without.
Venting: Venting to the outside of the tank through the model vent stringers had a negligible effect on the combustion progress or on the peak pressure reached at the end of the burn.
Ignition Location: Variation of the ignition location produced distinctive pressure loads on the structural components.
Liquid Fuel: Lofting of a cold liquid fuel layer was produced by the combustion-induced gas motion. Although this spray of liquid eventually ignited and burned, it did not contribute to the pressure loading.
Structural Failure: Structural failure resulted in flame acceleration, decreasing the overall combustion time.
TWA 800 Investigation: The pressure loads were sufficiently high, up to 4 bar, and the combustion events were sufficiently short, that the forward portion (spanwise beam 3, front spar) of the CWT structure would fail as a direct consequence of the explosion. A combination of pressure loads was produced in some tests consistent with the TWA 800 wreckage. Replica tests, structural modeling, and sensitivity studies on fuel concentration are needed before any conclusions can be drawn about probable ignition locations.
Cargo Bay: Tests with a simplified model of a half-full cargo bay indicated that repeated pressure waves with an amplitude of 1 bar or less are produced when an explosion scenario similar to TWA 800 is tested.
Future Testing: Future studies should include replica tests, tests with Jet A vapor and warm liquid Jet A layers, and sensitivity tests to examine ignition location, fuel concentration, and vent area perturbations.
Summary: Explosion tests in a 747-100 CWT model reveal that a very complex pattern of combustion occurs due the interaction of the flame and the flow-generated turbulence. A wide range of structural load patterns occur, depending on the location of the ignition source. Some of these load patterns are consistent with damage believed to be associated with the initial explosion event in TWA 800. Sensitivity of the loading to the ignition location indicates that narrowing down the ignition location in TWA 800 may be possible. However, the complexity of the combustion and structural failure processes in the actual center wing tank mandates extremely careful consideration of the uncertainties that enter into this process
The Soft Landing Problem: Minimizing Energy Loss by a Legged Robot Impacting Yielding Terrain
Enabling robots to walk and run on yielding terrain is increasingly vital to
endeavors ranging from disaster response to extraterrestrial exploration. While
dynamic legged locomotion on rigid ground is challenging enough, yielding
terrain presents additional challenges such as permanent ground deformation
which dissipates energy. In this paper, we examine the soft landing problem:
given some impact momentum, bring the robot to rest while minimizing foot
penetration depth. To gain insight into properties of penetration
depth-minimizing control policies, we formulate a constrained optimal control
problem and obtain a bang-bang open-loop force profile. Motivated by examples
from biology and recent advances in legged robotics, we also examine
impedance-control solutions to the dimensionless soft landing problem. Through
simulations, we find that optimal impedance reduces penetration depth nearly as
much as the open-loop force profile, while remaining robust to model
uncertainty. Through simulations and experiments, we find that the solution
space is rich, exhibiting qualitatively different relationships between impact
velocity and the optimal impedance for small and large dimensionless impact
velocities. Lastly, we discuss the relevance of this work to
minimum-cost-of-transport locomotion for several actuator design choices
- âŠ