67 research outputs found
ISO LWS Spectra of T Tauri and Herbig AeBe stars
We present an analysis of ISO-LWS spectra of eight T Tauri and Herbig AeBe young stellar objects.
Some of the objects are in the embedded phase of star-formation, whereas others have cleared their environs
but are still surrounded by a circumstellar disk. Fine-structure lines of [OI] and [CII] are most likely excited by
far-ultraviolet photons in the circumstellar environment rather than high-velocity outflows, based on comparisons
of observed line strengths with predictions of photon-dominated and shock chemistry models. A subset of our
stars and their ISO spectra are adequately explained by models constructed by Chiang & Goldreich (1997) and
Chiang et al. (2001) of isolated, passively heated, flared circumstellar disks. For these sources, the bulk of the
LWS flux at wavelengths longward of 55 µm arises from the disk interior which is heated diffusively by reprocessed
radiation from the disk surface. At 45 µm, water ice emission bands appear in spectra of two of the coolest stars,
and are thought to arise from icy grains irradiated by central starlight in optically thin disk surface layers
High fidelity imaging of geosynchronous satellites with the MROI
Interferometry currently provides the only practicable way to image satellites in Geosynchronous Earth Orbit (GEO) with sub-meter spatial resolution. The Magdalena Ridge Observatory Interferometer (MROI) is being funded by the US Air Force Research Laboratory to demonstrate the 9.5 magnitude sensitivity (at 2.2 µm wavelength) and baseline-bootstrapping capability that will be needed to realize a useful turn-key GEO imaging capability. This program will utilize the central three telescopes of the MROI and will aim to validate routine acquisition of fringe data on faint well-resolved targets. In parallel with this effort, the University of Cambridge are investigating the spatial resolution and imaging fidelity that can be achieved with different numbers of array elements. We present preliminary simulations of snapshot GEO satellite imaging with the MROI. Our results indicate that faithful imaging of the main satellite components can be obtained with as few as 7 unit telescopes, and that increasing the number of telescopes to 10 improves the effective spatial resolution from 0.75 meter to 0.5 meter and enables imaging of more complex targets.This is the author accepted manuscript. The final version is available from SPIE via http://dx.doi.org/10.1117/12.223247
Infrared interferometric observations of young stellar objects
We present infrared observations of four young stellar objects using the
Palomar Testbed Interferometer (PTI). For three of the sources, T Tau, MWC 147
and SU Aur, the 2.2 micron emission is resolved at PTI's nominal fringe spacing
of 4 milliarcsec (mas), while the emission region of AB Aur is over-resolved on
this scale. We fit the observations with simple circumstellar material
distributions and compare our data to the predictions of accretion disk models
inferred from spectral energy distributions. We find that the infrared emission
region is tenths of AU in size for T Tau and SU Aur and ~1 AU for MWC 147.Comment: 11 pages, 3 figures, to appear in the Astrophysical Journa
Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations
We improve upon the radiative, hydrostatic equilibrium models of passive
circumstellar disks constructed by Chiang & Goldreich (1997). New features
include (1) account for a range of particle sizes, (2) employment of
laboratory-based optical constants of representative grain materials, and (3)
numerical solution of the equations of radiative and hydrostatic equilibrium
within the original 2-layer (disk surface + disk interior) approximation. We
explore how the spectral energy distribution (SED) of a face-on disk depends on
grain size distributions, disk geometries and surface densities, and stellar
photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars,
including spectra from the Long Wavelength Spectrometer (LWS) aboard the
Infrared Space Observatory (ISO), are fitted with our models. Silicate emission
bands from optically thin, superheated disk surface layers appear in nearly all
systems. Water ice emission bands appear in LWS spectra of 2 of the coolest
stars. Infrared excesses in several sources are consistent with vertical
settling of photospheric grains. While this work furnishes further evidence
that passive reprocessing of starlight by flared disks adequately explains the
origin of infrared-to-millimeter wavelength excesses of young stars, we
emphasize how the SED alone does not provide sufficient information to
constrain particle sizes and disk masses uniquely.Comment: Accepted to ApJ, 35 pages inc. 14 figures, AAS preprin
Multiwavelength Study of Pulsation and Dust Production in Mira Variables Using Optical Interferometry for Constraints
Optical interferometry is a technique by which the diameters and indeed the direct pulsations of stars are routinely being measured. As a follow-on to a 7 year interferometric campaign to measure the pulsations of over 100 mira variables, our team has been using the Spitzer Space Telescope to obtain 95 mid-infrared spectra of 25 miras during their pulsations over one year while simultaneously ascertaining their near-infrared diameters using the Palomar Testbed Interferometer. These data will then be combined with modeling from NLTE and radiative transfer codes to place hard constraints on our understanding of these stars and their circumstellar environments. We present some initial results from this work and discuss the next steps toward fully characterizing the atmosphere, molecular photosphere and dust production in mira variables.Some of the work on this project was supported through a NASA grant to the PI and team associated with Spitzer program GO50717
Planet Formation Imager (PFI): Introduction and Technical Considerations
Complex non-linear and dynamic processes lie at the heart of the planet
formation process. Through numerical simulation and basic observational
constraints, the basics of planet formation are now coming into focus. High
resolution imaging at a range of wavelengths will give us a glimpse into the
past of our own solar system and enable a robust theoretical framework for
predicting planetary system architectures around a range of stars surrounded by
disks with a diversity of initial conditions. Only long-baseline interferometry
can provide the needed angular resolution and wavelength coverage to reach
these goals and from here we launch our planning efforts. The aim of the
"Planet Formation Imager" (PFI) project is to develop the roadmap for the
construction of a new near-/mid-infrared interferometric facility that will be
optimized to unmask all the major stages of planet formation, from initial dust
coagulation, gap formation, evolution of transition disks, mass accretion onto
planetary embryos, and eventual disk dispersal. PFI will be able to detect the
emission of the cooling, newly-formed planets themselves over the first 100
Myrs, opening up both spectral investigations and also providing a vibrant look
into the early dynamical histories of planetary architectures. Here we
introduce the Planet Formation Imager (PFI) Project
(www.planetformationimager.org) and give initial thoughts on possible facility
architectures and technical advances that will be needed to meet the
challenging top-level science requirements.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2014, Paper ID 9146-35, 10 pages, 2 Figure
Formaldehyde Masers: Exclusive Tracers of High-mass Star Formation
The detection of four formaldehyde (H2CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H2CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H2CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H2CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H2CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH3OH masers. We detected a new 6 cm H2CO emission line in G32.74-0.07. This work provides further evidence that supports an exclusive association between H2CO masers and young regions of high-mass star formation. Furthermore, we detected H2CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH3OH (5005 MHz), and CH2NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources
- …