6,825 research outputs found
1+1-dimensional p-wave superconductors from intersecting D-branes
In this work we explore 1+1 dimensional p-wave superconductors using the
probe D-brane construction. Specifically, we choose three intersecting D-brane
models: D1/D5, D2/D4 and D3/D3 systems. According to the dilaton running
behavior, we denote the former two systems as nonconformal models and the last
system as conformal. We find that all three models are qualitatively similar in
describing superconducting condensate as well as some basic features (such as
the gap formation and DC superconductivity) of superconducting conductivity.
There also exist some differences among the three models as far as the AC
conductivity is concerned. Specifically, for D3/D3 model there is no peak at
nonzero frequency for the imaginary part of the conductivity, which is present
in the nonconformal models; their asymptotic behaviors are different-for D1/D5
the real part of the AC conductivity approaches one at large frequency limit,
for D2/D4 it slowly goes to a certain nonzero constant smaller than one and for
D3/D3 it goes to zero. We find the profile of the AC conductivity for the D1/D5
system is very similar to that of higher dimensional p-wave superconductors.Comment: v2: matched with the published versio
Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of LaSrMnO
The suitability of a particular material for use in magnetic devices is
determined by the process of magnetization reversal/relaxation, which in turn
depends on the magnetic anisotropy. Therefore, designing new ways to control
magnetic anisotropy in technologically important materials is highly desirable.
Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic
ferromagnet LaSrMnO (LSMO) is determined by the proximity
to thermodynamic equilibrium conditions during growth. We performed a series of
X-ray diffraction and ferromagnetic resonance (FMR) experiments in two
different sets of samples: the first corresponds to LSMO thin-films deposited
under tensile strain on (001) SrTiO by Pulsed Laser Deposition (PLD; far
from thermodynamic equilibrium); the second were deposited by a slow Chemical
Solution Deposition (CSD) method, under quasi-equilibrium conditions. Thin
films prepared by PLD show a in-plane cubic anisotropy with an overimposed
uniaxial term. A large anisotropy constant perpendicular to the film plane was
also observed in these films. However, the uniaxial anisotropy is completely
suppressed in the CSD films. The out of plane anisotropy is also reduced,
resulting in a much stronger in plane cubic anisotropy in the chemically
synthesized films. This change is due to a different rotation pattern of
MnO octahedra to accomodate epitaxial strain, which depends not only on
the amount of tensile stress imposed by the STO substrate, but also on the
growth conditions. Our results demonstrate that the nature and magnitude of the
magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during
thin-film deposition.Comment: 6 pages, 8 Figure
Astronomy in the Cloud: Using MapReduce for Image Coaddition
In the coming decade, astronomical surveys of the sky will generate tens of
terabytes of images and detect hundreds of millions of sources every night. The
study of these sources will involve computation challenges such as anomaly
detection and classification, and moving object tracking. Since such studies
benefit from the highest quality data, methods such as image coaddition
(stacking) will be a critical preprocessing step prior to scientific
investigation. With a requirement that these images be analyzed on a nightly
basis to identify moving sources or transient objects, these data streams
present many computational challenges. Given the quantity of data involved, the
computational load of these problems can only be addressed by distributing the
workload over a large number of nodes. However, the high data throughput
demanded by these applications may present scalability challenges for certain
storage architectures. One scalable data-processing method that has emerged in
recent years is MapReduce, and in this paper we focus on its popular
open-source implementation called Hadoop. In the Hadoop framework, the data is
partitioned among storage attached directly to worker nodes, and the processing
workload is scheduled in parallel on the nodes that contain the required input
data. A further motivation for using Hadoop is that it allows us to exploit
cloud computing resources, e.g., Amazon's EC2. We report on our experience
implementing a scalable image-processing pipeline for the SDSS imaging database
using Hadoop. This multi-terabyte imaging dataset provides a good testbed for
algorithm development since its scope and structure approximate future surveys.
First, we describe MapReduce and how we adapted image coaddition to the
MapReduce framework. Then we describe a number of optimizations to our basic
approach and report experimental results comparing their performance.Comment: 31 pages, 11 figures, 2 table
Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory
Surface sensitive synchrotron-X-ray scattering studies reveal the
distributions of monovalent ions next to highly charged interfaces. A lipid
phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the
air-water interface, containing CsI at various concentrations. Using anomalous
reflectivity off and at the Cs resonance, we provide, for the first
time, spatial counterion distributions (Cs) next to the negatively charged
interface over a wide range of ionic concentrations. We argue that at low salt
concentrations and for pure water the enhanced concentration of hydroniums
HO at the interface leads to proton-transfer back to the phosphate
group by a high contact-potential, whereas high salt concentrations lower the
contact-potential resulting in proton-release and increased surface
charge-density. The experimental ionic distributions are in excellent agreement
with a renormalized-surface-charge Poisson-Boltzmann theory without fitting
parameters or additional assumptions
Resource Theory of Non-Revivals with Applications to Quantum Many-Body Scars
The study of state revivals has a long history in dynamical systems. We
introduce a resource theory to understand the use of state revivals in quantum
physics, especially in quantum many-body scarred systems. In this theory, a
state is said to contain no amount of resource if it experiences perfect
revivals under some unitary evolution. All other states are said to be
resourceful. We show that this resource bounds information scrambling.
Furthermore, we show that quantum many-body scarred dynamics can produce
revivals in the Hayden-Preskill decoding protocol and can also be used to
recover damaged quantum information. Our theory establishes a framework to
study information retrieval and its applications in quantum many-body physics.Comment: 7+19 page
Clec9a-mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells In Vivo
Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired
Difference in predictors and barriers to arts and cultural engagement with age in the United States: A cross-sectional analysis using the Health and Retirement Study
INTRODUCTION: Arts and cultural engagement are associated with a range of mental and physical health benefits, including promoting heathy aging and lower incidence of age-related disabilities such as slower cognitive decline and slower progression of frailty. This suggests arts engagement constitutes health-promoting behaviour in older age. However, there are no large-scale studies examining how the predictors of arts engagement vary with age. METHODS: Data from the Health and Retirement Study (2014) were used to identify sociodemographic, life satisfaction, social, and arts appreciation predictors of (1) frequency of arts engagement, (2) cultural attendance, (3) difficulty participating in the arts, and (4) being an interested non-attendee of cultural events. Logistic regression models were stratified by age groups [50-59, 60-69, ≥70] for the frequency of arts participation outcome and [50-69 vs ≥70] all other outcomes. RESULTS: Findings indicated a number of age-related predictors of frequent arts engagement, including gender, educational attainment, wealth, dissatisfaction with aging, and instrumental activities of daily living (iADL). For cultural event attendance, lower interest in the arts predicted lack of engagement across age groups, whereas higher educational attainment and more frequent religious service attendance became predictors in older age groups (≥ 70). Adults in both age groups were less likely to report difficulties engaging in the arts if they had lower neighbourhood safety, whilst poor self-rated health and low arts appreciation also predicted reduced likelihood of this outcome, but only in the younger (50-69) age group. Adults in the older (≥ 70) age group were more likely to be interested non-attendees of cultural events if they had higher educational attainment and less likely if they lived in neighbourhoods with low levels of safety. CONCLUSIONS: Our results suggest that certain factors become stronger predictors of arts and cultural engagement and barriers to engagement as people age. Further, there appear to be socioeconomic inequalities in engagement that may increase in older ages, with arts activities overall more accessible as individuals age compared to cultural engagement due to additional financial barriers and transportation barriers. Ensuring that these activities are accessible to people of all ages will allow older adults to benefit from the range of health outcomes gained from arts and cultural engagement
Noncommutative Field Theory from twisted Fock space
We construct a quantum field theory in noncommutative spacetime by twisting
the algebra of quantum operators (especially, creation and annihilation
operators) of the corresponding quantum field theory in commutative spacetime.
The twisted Fock space and S-matrix consistent with this algebra have been
constructed. The resultant S-matrix is consistent with that of Filk\cite{Filk}.
We find from this formulation that the spin-statistics relation is not violated
in the canonical noncommutative field theories.Comment: 13 pages, 1 figure, minor changes, add reference
- …