50,660 research outputs found

    The effects of material combination and surface roughness in lubricated silicon nitride/steel rolling contact fatigue

    Get PDF
    Four kinds of commercially finished 12.7 min HIPed silicon nitride bearing balls with surface roughness values R-a ranging from 0.002 to 0.016 mum were tested using a four-ball rolling configuration. They were rolling against two types of steel testing balls with different surface roughness and hardness, in fully lubricated condition at a maximum compressive stress of 6.58 GPa and at a speed of 10 000 rpm for over 135 million stress cycles. Rolling track surfaces were examined by microscope, SEM, 3-D surface analysis and interference profilometry. Experiment results show that the composite surface roughness are most influential. The shape of the surface topography of silicon nitride are not very sensitive. The slight difference. in steel hardness may lead to significant differences in steel fatigue life

    Physical Multi-Layer Phantoms for Intra-Body Communications

    Full text link
    This paper presents approaches to creating tissue mimicking materials that can be used as phantoms for evaluating the performance of Body Area Networks (BAN). The main goal of the paper is to describe a methodology to create a repeatable experimental BAN platform that can be customized depending on the BAN scenario under test. Comparisons between different material compositions and percentages are shown, along with the resulting electrical properties of each mixture over the frequency range of interest for intra-body communications; 100 KHz to 100 MHz. Test results on a composite multi-layer sample are presented confirming the efficacy of the proposed methodology. To date, this is the first paper that provides guidance on how to decide on concentration levels of ingredients, depending on the exact frequency range of operation, and the desired matched electrical characteristics (conductivity vs. permittivity), to create multi-layer phantoms for intra-body communication applications

    Polyhedral Cones of Magic Cubes and Squares

    Full text link
    Using computational algebraic geometry techniques and Hilbert bases of polyhedral cones we derive explicit formulas and generating functions for the number of magic squares and magic cubes.Comment: 14 page

    An assessment of the quality of the I-DSD and the I-CAH registries - international registries for rare conditions affecting sex development

    Get PDF
    With the proliferation of rare disease registries, there is a need for registries to undergo an assessment of their quality against agreed standards to ensure their long-term sustainability and acceptability.This study was performed to evaluate the I-DSD and I-CAH Registries and identify their strengths and weaknesses. The design and operational aspects of the registries were evaluated against published quality indicators. Additional criteria included the level of activity, international acceptability of the registries and their use for research. The design of the I-DSD and I-CAH Registries provides them with the ability to perform multiple studies and meet the standards for data elements, data sources and eligibility criteria. The registries follow the standards for data security, governance, ethical and legal issues, sustainability and communication of activities. The data have a high degree of validity, consistency and accuracy and the completeness is maximal for specific conditions such as androgen insensitivity syndrome and congenital adrenal hyperplasia. In terms of research output, the external validity is strong but the wide variety of cases needs further review. The internal validity of data was condition specific and highest for conditions such as congenital adrenal hyperplasia. The shift of the registry from a European registry to an international registry and the creation of a discrete but linked CAH registry increased the number of users and stakeholders as well as the international acceptability of both registries. The I-DSD and I-CAH registries comply with the standards set by expert organisations. Recent modifications in their operation have allowed the registries to increase their user acceptability

    Hyperbolic Metamaterial Resonator-Antenna Scheme for Large, Broadband Emission Enhancement and Single Photon Collection

    Full text link
    We model the broadband enhancement of single-photon emission from color centres in silicon carbide nanocrystals coupled to a planar hyperbolic metamaterial, HMM resonator. The design is based on positioning the single photon emitters within the HMM resonator, made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the lossy Fabry Perot structure modes arising within the high-index HMM cavity. To capture this broadband enhancement in the single photon emitters spontaneous emission, we placed a simple gold based cylindrical antenna on top of the HMM resonator. We analyzed the performance of this HMM coupled antenna structure in terms of the Purcell enhancement, quantum efficiency, collection efficiency and overall collected photon rate. For perpendicular dipole orientation relative to the interface, the HMM coupled antenna resonator leads to a significantly large spontaneous emission enhancement with Purcell factor of the order of 250 along with a very high average total collected photon rate, CPR of about 30 over a broad emission spectrum, 700 nm to 1000 nm. The peak CPR increases to about 80 at 900 nm, corresponding to the emission of silicon-carbide quantum emitters. This is a state of the art improvement considering the previous computational designs have reported a maximum average CPR of 25 across the nitrogen-vacancy centre emission spectrum, 600 nm to 800 nm with the highest value being about 40 at 650 nm

    Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation

    Get PDF
    A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of the nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage between the two swarm intelligence algorithms is currently being investigated thoroughly on many benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms can possibly be considered as ‘computationally creative’

    Creative or Not? Birds and Ants Draw with Muscle

    Get PDF
    In this work, a novel approach of merging two swarm intelligence algorithms is considered – one mimicking the behaviour of ants foraging (Stochastic Diffusion Search [5]) and the other algorithm simulating the behaviour of birds flocking (Particle Swarm Optimisation [17]). This hybrid algorithm is assisted by a mechanism inspired from the behaviour of skeletal muscles activated by motor neurons. The operation of the swarm intelligence algorithms is first introduced via metaphor before the new hybrid algorithm is defined. Next, the novel behaviour of the hybrid algorithm is reflected through a cooperative attempt to make a drawing, followed by a discussion about creativity in general and the ’computational creativity’ of the swarm

    Shear flow of angular grains: acoustic effects and non-monotonic rate dependence of volume

    Full text link
    Naturally-occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of auto-acoustic compaction -- non-monotonic variation of shear band volume with shear rate in angular particles -- recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone (STZ) theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration, and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions, and propose additional experiments that provide stringent tests on the new theoretical elements.Comment: 12 pages, 3 figure
    • …
    corecore