12,266 research outputs found

    Vacuum birefringence and dichroism in a strong plane-wave background

    Full text link
    In the present study, we consider the effects of vacuum birefringence and dichroism in strong electromagnetic fields. According to quantum electrodynamics, the vacuum state exhibits different refractive properties depending on the probe photon polarization and one also obtains different probabilities of the photon decay via production of electron-positron pairs. Here we investigate these two phenomena by means of several different approaches to computing the polarization operator. The external field is assumed to be a linearly polarized plane electromagnetic wave of arbitrary amplitude and frequency. Varying the probe-photon energy and the field parameters, we thoroughly examine the validity of the locally-constant field approximation (LCFA) and techniques involving perturbative expansions in terms of the external-field amplitude. Within the latter approach, we develop a numerical method based on a direct evaluation of the weak-field Feynman diagrams, which can be employed for investigating more complex external backgrounds. It is demonstrated that the polarization operator depends on two parameters: classical nonlinearity parameter ξ\xi and the product η=ωq0/m2\eta = \omega q_0 / m^2 of the laser field frequency ω\omega and the photon energy q0q_0 (mm is the electron mass). The domains of validity of the approximate techniques in the ξη\xi \eta plane are explicitly identified.Comment: 11 pages, 6 figure

    Performance of the modified Becke-Johnson potential

    Full text link
    Very recently, in the 2011 version of the Wien2K code, the long standing shortcome of the codes based on Density Functional Theory, namely, its impossibility to account for the experimental band gap value of semiconductors, was overcome. The novelty is the introduction of a new exchange and correlation potential, the modified Becke-Johnson potential (mBJLDA). In this paper, we report our detailed analysis of this recent work. We calculated using this code, the band structure of forty one semiconductors and found an important improvement in the overall agreement with experiment as Tran and Blaha [{\em Phys. Rev. Lett.} 102, 226401 (2009)] did before for a more reduced set of semiconductors. We find, nevertheless, within this enhanced set, that the deviation from the experimental gap value can reach even much more than 20%, in some cases. Furthermore, since there is no exchange and correlation energy term from which the mBJLDA potential can be deduced, a direct optimization procedure to get the lattice parameter in a consistent way is not possible as in the usual theory. These authors suggest that a LDA or a GGA optimization procedure is used previous to a band structure calculation and the resulting lattice parameter introduced into the 2011 code. This choice is important since small percentage differences in the lattice parameter can give rise to quite higher percentage deviations from experiment in the predicted band gap value.Comment: 10 pages, 2 figures, 5 Table

    Equation of state of cubic boron nitride at high pressures and temperatures

    Get PDF
    We report accurate measurements of the equation of state (EOS) of cubic boron nitride by x-ray diffraction up to 160 GPa at 295 K and 80 GPa in the range 500-900 K. Experiments were performed on single-crystals embedded in a quasi-hydrostatic pressure medium (helium or neon). Comparison between the present EOS data at 295 K and literature allows us to critically review the recent calibrations of the ruby standard. The full P-V-T data set can be represented by a Mie-Gr\"{u}neisen model, which enables us to extract all relevant thermodynamic parameters: bulk modulus and its first pressure-derivative, thermal expansion coefficient, thermal Gr\"{u}neisen parameter and its volume dependence. This equation of state is used to determine the isothermal Gr\"{u}neisen mode parameter of the Raman TO band. A new formulation of the pressure scale based on this Raman mode, using physically-constrained parameters, is deduced.Comment: 8 pages, 7 figure
    corecore