12 research outputs found
Cooling curve analysis in binary Al-Cu alloys: Part I- Effect of cooling rate and copper content on the eutectic formation
There are many techniques available for investigating the solidification of metals and alloys. In recent years computer-aided cooling curve analysis (CA-CCA) has been used to determine thermo-physical properties of alloys, latent heat and solid fraction. In this study, the effect of cooling rate and copper addition was taken into consideration in non- equilibrium eutectic transformation of binary Al- Cu melt via cooling curve analysis. For this purpose, melts with different copper weight percent of 2.2, 3.7 and 4.8 were prepared and cooled in controlled rates of 0.04 and 0.42 °C/s. Results show that, latent heat of alloy highly depends upon the post- solidification cooling rate and composition. As copper content of alloy and cooling rate increase, achieved nonequilibrium eutectic phase increases that leads to release of high amount of latent heat and appearing of second deviation in cooling curve. This deviation can be seen in first time derivative curve in the form of a definite peak
Fabrication of Iron Aluminide Coatings (Fe3Al and FeAl3) on Steel Substrate by Self-Propagating High Temperature Synthesis (SHS) Process
Iron aluminides (Fe3Al and FeAl3) coatings were fabricated on a steel substrate by self-propagating high temperature synthesis (SHS) method. Raw materials, Fe and Al powders, were mixed at two different stoichiometry ratios (3:1 and 1:3). The mixtures and the substrate were placed in a furnace at 950 °C to ignite the SHS process. Coating phases were investigated using X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). The microstructure of the coatings was analyzed with optical microscopy (OM) and scanning electron microscopy (SEM). The results confirmed that it is possible to produce Fe3Al and FeAl3 coatings on steel substrate using SHS method. In addition, the results show that the coatings were composed of two different phases and their microstructures were non-porous and dense. Wear resistance of the coatings were higher than that of the substrate
Recommended from our members
ECEL1 novel mutation in arthrogryposis type 5D: A molecular dynamic simulation study.
BACKGROUND: ECEL1 has been presented as a causal gene of an autosomal recessive form distal arthrogryposis (DA) which affects the distal joints. The present study focused on bioinformatic analysis of a novel mutation in ECEL1, c.535A>G (p. Lys179Glu), which was reported in a family with 2 affected boys and fetus through prenatal diagnosis. METHODS: Whole-exome sequencing data analyzed followed by molecular dynamic (MD) simulation of native ECEL1 protein and mutant structures using GROMACS software. One variant c.535A>G, p. Lys179Glu (homozygous) on gene ECEL1 has been detected in proband which was validated in all family members through Sanger sequencing. RESULTS: We demonstrated remarkable constructional differences by MD simulation between wild-type and novel mutant of ECEL1 gene. The reason for the lack of the Zn ion binding in mutation in the ECEL1 protein has been identified by average atomic distance and SMD analysis among the wild-type and mutant. CONCLUSION: Overall, in this study, we present knowledge of the effect of the studied variant on the ECEL1 protein leading to neurodegenerative disorder in humans. This work may hopefully be supplementary to classical molecular dynamics to dissolve the mutational effects of cofactor-dependent protein
Cooling curve analysis in binary Al-Cu alloys: Part I- Effect of cooling rate and copper content on the eutectic formation
There are many techniques available for investigating the solidification of metals and alloys. In recent years computer-aided cooling curve analysis (CA-CCA) has been used to determine thermo-physical properties of alloys, latent heat and solid fraction. In this study, the effect of cooling rate and copper addition was taken into consideration in non- equilibrium eutectic transformation of binary Al- Cu melt via cooling curve analysis. For this purpose, melts with different copper weight percent of 2.2, 3.7 and 4.8 were prepared and cooled in controlled rates of 0.04 and 0.42 °C/s. Results show that, latent heat of alloy highly depends upon the post- solidification cooling rate and composition. As copper content of alloy and cooling rate increase, achieved nonequilibrium eutectic phase increases that leads to release of high amount of latent heat and appearing of second deviation in cooling curve. This deviation can be seen in first time derivative curve in the form of a definite peak
EXPERIMENTALl ANALYSIS OF PARTITION COEFFICIENT IN Al-Mg ALLOYS
Because the partition coefficient is one of the most important parameters affecting microsegregation, the aim of this research is to experimentally analyse the partition coefficient in Al-Mg alloys. In order to experimentally measure the partition coefficient, a series of quenching experiments during solidification were carried out. For this purpose binary Al-Mg alloys containing 6.7 and 10.2 wt-% Mg were melted and solidified in a DTA furnace capable of quenching samples during solidification. Cooling rates of 0.5 and 5 K/min were used and samples were quenched from predetermined temperatures during solidification. The fractions and compositions of the phases were measured by quantitative metallography and SEM/EDX analyses, respectively. These results were used to measure the experimental partition coefficients. The resultant partition coefficients were used to model the concentration profile in the primary phase and the results were compared with equilibrium calculations and experimental profiles. The results of calculations based on the experimental partition coefficients show better consistency with experimental concentration profiles than the equilibrium calculations
EFFECT OF COOLING RATE AND GRAIN REFINEMENT ON THE MICROSEGREGATION IN Al-4.8 wt.% Cu ALLOY
Microsegregation is one of the most important phenomena occurs during solidification. It usually results in formation of some unexpected second phases which generally affect the mechanical properties and specially reduce the workability of casting products. The aim of this research is to study the effect of cooling rate and grain refinement on the microsegregation in Al-4.8 wt.% Cu. For this purpose two series of experiments were designed. In the first set of experiments, the alloy was melted and cooled in three different rates, i.e. 0.04, 0.42, and 1.08 K/s in a DTA furnace. In the second series of experiments, the effect of grain refinement on the microsegregation at a constant cooling rate of 0.19 K/s was investigated. Al-5Ti-1B master alloy was used as grain refiner. Results showed that by increasing the cooling rate the amount of non-equilibrium eutectic phase increases from 5.1 to 7.4 wt.%, and the minimum concentration of solute element in primary phase decreases from 1.51 to 1.05 wt.% Cu. By grain refinement of the alloy, the amount of non-equilibrium eutectic phase decreases from 5.5 to 4.7 wt.%, and the minimum concentration of solute element in the primary phase increases from 0.98 to 1.07 wt.% Cu. So it is concluded that increasing cooling rate in the range of 0.04 to 1.08 K/s, increases and grain refinement reduces the microsegregatio