53 research outputs found
Reduced Dwell-Fatigue Resistance in a Ni-Base Superalloy After Short-Term Thermal Exposure
The effect of short-term thermal exposure on microstructure and dwell-fatigue resistance of Ni-base superalloy 718Plus was investigated. Contrary to previous studies performed after long-term exposure, an increase in the dwell-fatigue crack growth rate was observed, which was connected to a small increase in the size of the hardening precipitates. The proposed controlling mechanism was the stress relaxation rate at the crack tip, and based on this a schematic model for the development of the properties during exposure is presented
Policing, crime and ‘big data’; towards a critique of the moral economy of stochastic governance
Hot deformation behavior and processing maps of diamond/Cu composites
The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 C to 1000 C) and from 0.001 to 5 s1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation (R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s1 and 1153 K/0.01 s1 (850 C/0.01 s1 and 880 C/0.01 s1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites
The Effect of Grain Boundary Carbides on Dynamic Recrystallization During Hot Compression of Ni-Based Superalloy Haynes 282 TM
In alloys where carbides are the main grain boundary phase, the role of carbides during hot working is not known. Here, we address the effect of grain boundary carbides on the dynamic recrystallization during hot compression of Ni-base superalloy Haynes 282. When excluding variations from experimental factors neither stress evolution nor final microstructure indicated that carbides exerted a significant influence on the dynamic recrystallization. The carbide solvus temperature is not a critical limit during thermomechanical processes.Open access funding provided by Chalmers University of Technology.</p
High-temperature crack growth in a Ni-base superalloy during sustained load
he high-temperature sustained load crack growth behaviour of a Ni-base superalloy was investigated using a combination of mechanical testing in controlled atmosphere, fractographical and microanalytical investigations, and finite element modelling. The results show that the local crack front geometry is un- even on two scales – jaggedness on the scale of 100 μm was observed in all specimens, whereas mm- scale waviness could occasionally be observed. The jaggedness can be explained by a percolation-type crack growth along weaker grain boundaries, whereas the large-scale waviness is presumably due to larger regions of the material having specific grain texture with high crack growth resistance. The un-even crack front is shown to potentially have considerable effects on the loading conditions at the crack tip, whereas ligaments of un-cracked material in the crack wake are deemed to have less effect on the crack tip loading due to their low area fraction. The ligaments fail intergranularly in the wake as the crack grows in the present case, as opposed to by creep fracture as previously proposed. Finally, the plastically deformed regions about the crack and crack tip are shown not to exhibit any elevated oxygen levels, implying that the damage in these regions is purely mechanical
Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering
High-Temperature Hydrogen Attack on 2.25Cr-1Mo Steel: The Roles of Residual Carbon, Initial Microstructure and Carbide Stability
Abstract
High temperature hydrogen attack is a damage mechanism that occurs in critical steel components in petrochemical plants and refineries when the hydrogen penetrates the steel and reacts with the carbides within to produce pores containing methane. With the motivation of understanding the role of carbide stability on the reaction with hydrogen, samples of a classic 2
1
4
Cr-1Mo steel were subjected to a variety of heat treatments that generate a corresponding variety of precipitates, prior to exposure to high-pressure hydrogen in an autoclave. Using quantitative carbide, porosity and microstructural characterisation, it has been possible to demonstrate the roles of four variables: (a) the carbon residue present in the ferrite; (b) the non-equilibrium chemical composition of carbide; (c) the fraction of the carbide that is closest to the thermodynamic equilibrium state and (d) the initial microstructural state, i.e., whether it is martensitic or bainitic prior to heat treatment.</jats:p
- …