87 research outputs found

    Universal Scaling in Non-equilibrium Transport Through a Single-Channel Kondo Dot

    Full text link
    Scaling laws and universality play an important role in our understanding of critical phenomena and the Kondo effect. Here we present measurements of non-equilibrium transport through a single-channel Kondo quantum dot at low temperature and bias. We find that the low-energy Kondo conductance is consistent with universality between temperature and bias and characterized by a quadratic scaling exponent, as expected for the spin-1/2 Kondo effect. The non-equilibrium Kondo transport measurements are well-described by a universal scaling function with two scaling parameters.Comment: v2: improved introduction and theory-experiment comparsio

    Engineering the Kondo and Fano effects in double quantum dots

    Full text link
    We demonstrate delicate control over the Kondo effect and its interplay with quantum interference in an Aharonov-Bohm interferometer containing one Kondo dot and one noninteracting dot. It is shown that the Kondo resonance undergoes a dramatic evolution as the interdot tunnel coupling progressively increases. A novel triple Kondo splitting occurs from the interference between constant and Lorentzian conduction bands that cooperate in forming the Kondo singlet. The device also manifests a highly controllable Fano-Kondo effect in coherent electronic transport, and can be tuned to a regime where the coupled dots behave as decoupled dots.Comment: 5 pages, 4 figure

    Non-equilibrium transport theory of the singlet-triplet transition: perturbative approach

    Full text link
    We use a simple iterative perturbation theory to study the singlet-triplet (ST) transition in lateral and vertical quantum dots, modeled by the non-equilibrium two-level Anderson model. To a great surprise, the region of stable perturbation theory extends to relatively strong interactions, and this simple approach is able to reproduce all experimentally-observed features of the ST transition, including the formation of a dip in the differential conductance of a lateral dot indicative of the two-stage Kondo effect, or the maximum in the linear conductance around the transition point. Choosing the right starting point to the perturbation theory is, however, crucial to obtain reliable and meaningful results

    Persistent currents through a quantum impurity: Protection through integrability

    Full text link
    We consider an integrable model of a one-dimensional mesoscopic ring with the conduction electrons coupled by a spin exchange to a magnetic impurity. A symmetry analysis based on a Bethe Ansatz solution of the model reveals that the current is insensitive to the presence of the impurity. We argue that this is true for any integrable impurity-electron interaction, independent of choice of physical parameters or couplings. We propose a simple physical picture of how the persistent current gets protected by integrability.Comment: 5 pages, minor update

    Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads

    Full text link
    We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Due to Kondo enhancement of Andreev reflections the zero-bias anomaly develops sidepeaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T_K we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/kT_K as the only relevant energy scale, providing experimental evidence for universal scaling in this system.Comment: 4 pages, 3 figure
    • …
    corecore