284 research outputs found
Molecular dynamics simulation of the order-disorder phase transition in solid NaNO
We present molecular dynamics simulations of solid NaNO using pair
potentials with the rigid-ion model. The crystal potential surface is
calculated by using an \emph{a priori} method which integrates the \emph{ab
initio} calculations with the Gordon-Kim electron gas theory. This approach is
carefully examined by using different population analysis methods and comparing
the intermolecular interactions resulting from this approach with those from
the \emph{ab initio} Hartree-Fock calculations. Our numerics shows that the
ferroelectric-paraelectric phase transition in solid NaNO is triggered by
rotation of the nitrite ions around the crystallographical c axis, in agreement
with recent X-ray experiments [Gohda \textit{et al.}, Phys. Rev. B \textbf{63},
14101 (2000)]. The crystal-field effects on the nitrite ion are also addressed.
Remarkable internal charge-transfer effect is found.Comment: RevTeX 4.0, 11 figure
Quantum suppression of shot noise in field emitters
We have analyzed the shot noise of electron emission under strong applied
electric fields within the Landauer-Buttiker scheme. In contrast to the
previous studies of vacuum-tube emitters, we show that in new generation
electron emitters, scaled down to the nanometer dimensions, shot noise much
smaller than the Schottky noise is observable. Carbon nanotube field emitters
are among possible candidates to observe the effect of shot-noise suppression
caused by quantum partitioning.Comment: 5 pages, 1 fig, minor changes, published versio
The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end stage renal disease
The risk of end-stage renal disease (ESRD) remains high in patients with type 1diabetes and proteinuria; however, little is known about the rate of decline in their renal function. To help determine this we enrolled patients with 1 diabetes and proteinuria whose estimated glomerular filtration rate (eGFR) was normal (equal to or above 60 ml/min/1.73). Using a minimum of 5 serial measurements of serum creatinine for 161 patients, we determined individual trajectories of eGFR change and the occurrence of ESRD during 5–18 years of follow-up. The rates were linear for 110 patients, for 24 the non-linear rate was mild enough to satisfy a linear model, and the rates were clearly non-linear for only 27 patients. Overall, in more than one third of patients, the eGFR decline was less than 3.5 ml/min/1.73 per year and the lifetime risk of ESRD could be considered negligible. In the remainder of patients, eGFR declined with widely different slopes and ESRD developed within 2 to 18 years. Based on up to five years observation when renal function was within the normal range, the estimates of early eGFR slope predicted the risk of ESRD during subsequent follow-up better than the baseline clinical characteristics of glycated hemoglobin, blood pressure, or the albumin to creatinine ratio. Thus, the early slope of eGFR decline in patients with type 1diabetes and proteinuria can be used to predict the risk of ESRD
Soluble tumor necrosis factor receptor 1 and 2 predict outcomes in advanced chronic kidney disease : a prospective cohort study
Background : Soluble tumor necrosis factor receptors 1 (sTNFR1) and 2 (sTNFR2) have been associated to progression of renal failure, end stage renal disease and mortality in early stages of chronic kidney disease (CKD), mostly in the context of diabetic nephropathy. The predictive value of these markers in advanced stages of CKD irrespective of the specific causes of kidney disease has not yet been defined. In this study, the relationship between sTNFR1 and sTNFR2 and the risk for adverse cardiovascular events (CVE) and all-cause mortality was investigated in a population with CKD stage 4-5, not yet on dialysis, to minimize the confounding by renal function.
Patients and methods : In 131 patients, CKD stage 4-5, sTNFR1, sTNFR2 were analysed for their association to a composite endpoint of all-cause mortality or first non-fatal CVE by univariate and multivariate Cox proportional hazards models. In the multivariate models, age, gender, CRP, eGFR and significant comorbidities were included as covariates.
Results : During a median follow-up of 33 months, 40 events (30.5%) occurred of which 29 deaths (22.1%) and 11 (8.4%) first non-fatal CVE. In univariate analysis, the hazard ratios (HR) of sTNFR1 and sTNFR2 for negative outcome were 1.49 (95% confidence interval (CI): 1.28-1.75) and 1.13 (95% CI: 1.06-1.20) respectively. After adjustment for clinical covariables (age, CRP, diabetes and a history of cardiovascular disease) both sTNFRs remained independently associated to outcomes (HR: sTNFR1: 1.51, 95% CI: 1.30-1.77; sTNFR2: 1.13, 95% CI: 1.06-1.20). A subanalysis of the non-diabetic patients in the study population confirmed these findings, especially for sTNFR1.
Conclusion : sTNFR1 and sTNFR2 are independently associated to all-cause mortality or an increased risk for cardiovascular events in advanced CKD irrespective of the cause of kidney disease
Recommended from our members
Risk of ESRD and All Cause Mortality in Type 2 Diabetes According to Circulating Levels of FGF-23 and TNFR1
Introduction: Recent studies demonstrated that circulating fibroblast growth factor (FGF)-23 was associated with risk of end stage renal disease (ESRD) and mortality. This study aims to examine whether the predictive effect of FGF-23 is independent from circulating levels of tumor necrosis factor receptor 1 (TNFR1), a strong predictor of ESRD in Type 2 diabetes (T2D). Methods: We studied 380 patients with T2D who were followed for 8–12 years and were used previously to examine the effect of TNFR1. Baseline plasma FGF-23 was measured by immunoassay. Results: During follow-up, 48 patients (13%) developed ESRD and 83 patients (22%) died without ESRD. In a univariate analysis, baseline circulating levels of FGF-23 and TNFR1 were significantly higher in subjects who subsequently developed ESRD or died without ESRD than in those who remained alive. In a Cox proportional hazard model, baseline concentration of FGF-23 was associated with increased risk of ESRD, however its effect was no longer significant after controlling for TNFR1 and other clinical characteristics (HR 1.3, p = 0.15). The strong effect of circulating level of TNFR1 on risk of ESRD was not changed by including circulating levels of FGF-23 (HR 8.7, p<0.001). In the Cox multivariate model, circulating levels of FGF-23 remained a significant independent predictor of all-cause mortality unrelated to ESRD (HR 1.5, p<0.001). Conclusions: We demonstrated that the effect of circulating levels of FGF-23 on the risk of ESRD is accounted for by circulating levels of TNFR1. We confirmed that circulating levels of FGF-23 have an independent effect on all-cause mortality in T2D
Unidirectional Nano-modulated Binding and Electron Scattering in Epitaxial Borophene
A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate. Our results show that the binding of borophene to Ir(111) exhibits pronounced one-dimensional modulation and transforms borophene into a nanograting. The scattering of photoelectrons from this structural grating gives rise to the replication of the electronic bands. In addition, the binding modulation is reflected in the chemical reactivity of borophene and gives rise to its inhomogeneous aging effect. Such aging is easily reset by dissolving boron atoms in iridium at high temperature, followed by their reassembly into a fresh atomically thin borophene mesh. Besides proving electron-grating capabilities of the boron monolayer, our data provide comprehensive insight into the electronic properties of epitaxial borophene which is vital for further examination of other boron systems of reduced dimensionality
Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety
<p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) stimulates hepatocyte proliferation, and also acts as an anti-apoptotic factor. Therefore, HGF is a potential therapeutic agent for treatment of fatal liver diseases. We performed a translational medicine protocol with recombinant human HGF (rh-HGF), including a phase I/II study of patients with fulminant hepatitis (FH) or late-onset hepatic failure (LOHF), in order to examine the safety, pharmacokinetics, and clinical efficacy of this molecule.</p> <p>Methods</p> <p>Potential adverse effects identified through preclinical safety tests with rh-HGF include a decrease in blood pressure (BP) and an increase in urinary excretion of albumin. Therefore, we further investigated the effect of rh-HGF on circulatory status and renal toxicity in preclinical animal studies. In a clinical trial, 20 patients with FH or LOHF were evaluated for participation in this clinical trial, and four patients were enrolled. Subjects received rh-HGF (0.6 mg/m<sup>2</sup>/day) intravenously for 12 to 14 days.</p> <p>Results</p> <p>We established an infusion method to avoid rapid BP reduction in miniature swine, and confirmed reversibility of renal toxicity in rats. Although administration of rh-HGF moderately decreased BP in the participating subjects, this BP reduction did not require cessation of rh-HGF or any vasopressor therapy; BP returned to resting levels after the completion of rh-HGF infusion. Repeated doses of rh-HGF did not induce renal toxicity, and severe adverse events were not observed. Two patients survived, however, there was no evidence that rh-HGF was effective for the treatment of FH or LOHF.</p> <p>Conclusions</p> <p>Intravenous rh-HGF at a dose of 0.6 mg/m<sup>2 </sup>was well tolerated in patients with FH or LOHF; therefore, it is desirable to conduct further investigations to determine the efficacy of rh-HGF at an increased dose.</p
Studies on the anti-obesity activity of zinc-α2-glycoprotein in the rat
OBJECTIVE: To investigate the anti-obesity effect of the adipokine zinc-a(2)-glycoprotein (ZAG) in rats and the mechanism of this effect. SUBJECTS: Mature male Wistar rats (540 ± 83 g) were administered human recombinant ZAG (50 µg per 100 g body weight given intravenously daily) for 10 days, while control animals received an equal volume of phosphate-buffered saline (PBS). RESULTS: Animals treated with ZAG showed a progressive decrease in body weight, without a decrease in food and water intake, but with a 0.4 °C rise in body temperature. Body composition analysis showed loss of adipose tissue, but an increase in lean body mass. The loss of fat was due to an increase in lipolysis as shown by a 50% elevation of plasma glycerol, accompanied by increased utilization of non-esterified fatty acids, as evidenced by the 55% decrease in plasma levels. Plasma levels of glucose and triglycerides were also reduced by 36-37% and there was increased expression of the glucose transporter 4 in both skeletal muscle and adipose tissue. Expression of the lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase in the white adipose tissue (WAT) were increased twofold after ZAG administration. There was almost a twofold increased expression of uncoupling proteins 1 and 3 in brown adipose tissue and WAT, which would contribute to increased substrate utilization. Administration of ZAG increased ZAG expression twofold in the gastrocnemius muscle, BAT and WAT, which was probably necessary for its biological effect. CONCLUSION: These results show that ZAG produces increased lipid mobilization and utilization in the rat
Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit
The bacterial Ras-like protein Era has been reported previously to bind 16S rRNA within the 30S ribosomal subunit and to play a crucial role in ribosome assembly. An orthologue of this essential GTPase ERAL1 (Era G-protein-like 1) exists in higher eukaryotes and although its exact molecular function and cellular localization is unknown, its absence has been linked to apoptosis. In the present study we show that human ERAL1 is a mitochondrial protein important for the formation of the 28S small mitoribosomal subunit. We also show that ERAL1 binds in vivo to the rRNA component of the small subunit [12S mt (mitochondrial)-rRNA]. Bacterial Era associates with a 3′ unstructured nonanucleotide immediately downstream of the terminal stem–loop (helix 45) of 16S rRNA. This site contains an AUCA sequence highly conserved across all domains of life, immediately upstream of the anti-Shine–Dalgarno sequence, which is conserved in bacteria. Strikingly, this entire region is absent from 12S mt-rRNA. We have mapped the ERAL1-binding site to a 33 nucleotide section delineating the 3′ terminal stem–loop region of 12S mt-rRNA. This loop contains two adenine residues that are reported to be dimethylated on mitoribosome maturation. Furthermore, and also in contrast with the bacterial orthologue, loss of ERAL1 leads to rapid decay of nascent 12S mt-rRNA, consistent with a role as a mitochondrial RNA chaperone. Finally, whereas depletion of ERAL1 leads to apoptosis, cell death occurs prior to any appreciable loss of mitochondrial protein synthesis or reduction in the stability of mitochondrial mRNA
Portacaval shunt causes apoptosis and liver atrophy in rats despite increases in endogenous levels of major hepatic growth factors
Background/Aims: The response to the liver damage caused by portacaval shunt (PCS) is characterized by low-grade hyperplasia and atrophy. To clarify mechanisms of this dissociation, we correlated the expression of 'hepatotrophic factors' and the antihepatotrophic and proapoptotic peptide, transforming growth factor (TGF)-β, with the pathologic changes caused by PCS in rats. Methods: PCS was created by side-to-side anastomosis between the portal vein and inferior vena cava, with ligation of the hilar portal vein. Hepatic growth mediators were measured to 2 months. Results: The decrease in the liver/body weight ratio during the first 7 days which stabilized by day 15, corresponded to parenchymal cell apoptosis and increases in hepatic TGF-β concentration that peaked at 1.4 × baseline at 15 days before returning to control levels by day 30. Variable increases in the concentrations of growth promoters (hepatocyte growth factor, TGF-α and augmenter of liver regeneration) also occurred during the period of hepatocellular apoptosis. Conclusions: The development of hepatic atrophy was associated with changes in TGF-β concentration, and occurred despite increased expression of multiple putative growth promoters. The findings suggest that apoptosis set in motion by TGF-β constrains the amount of hepatocyte proliferation independently from control of liver volume. © 2002 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved
- …