10,963 research outputs found
Crystallinity versus mass-loss rate in Asymptotic Giant Branch stars
Infrared Space Observatory (ISO) observations have shown that O-rich
Asymptotic Giant Branch (AGB) stars exhibit crystalline silicate features in
their spectra only if their mass-loss rate is higher than a certain threshold
value. Usually, this is interpreted as evidence that crystalline silicates are
not present in the dust shells of low mass-loss rate objects. In this study,
radiative transfer calculations have been performed to search for an
alternative explanation to the lack of crystalline silicate features in the
spectrum of low mass-loss rate AGB stars. It is shown that due to a temperature
difference between amorphous and crystalline silicates it is possible to
include up to 40% of crystalline silicate material in the circumstellar dust
shell, without the spectra showing the characteristic spectral features. Since
this implies that low mass-loss rate AGB stars might also form crystalline
silicates and deposit them into the Interstellar Medium (ISM), the described
observational selection effect may put the process of dust formation around AGB
stars and the composition of the predominantly amorphous dust in the
Interstellar Medium in a different light. Our model calculations result in a
diagnostic tool to determine the crystallinity of an AGB star with a known
mass-loss rate.Comment: accepted by A&A, 10 pages, 11 figure
Dust composition and mass-loss return from the luminous blue variable R71 in the LMC
We present an analysis of mid-and far-infrared (IR) spectrum and spectral
energy distribution (SED) of the LBV R71 in the LMC.This work aims to
understand the overall contribution of high-mass LBVs to the total dust-mass
budget of the interstellar medium (ISM) of the LMC and compare this with the
contribution from low-mass asymptotic giant branch (AGB) stars. As a case
study, we analyze the SED of R71. We compiled all the available photometric and
spectroscopic observational fluxes from various telescopes for a wide
wavelength range (0.36 -- 250\,m). We determined the dust composition from
the spectroscopic data, and derived the ejected dust mass, dust mass-loss rate,
and other dust shell properties by modeling the SED of R71. We noted nine
spectral features in the dust shell of R71 by analyzing Spitzer spectroscopic
data. Among these, we identified three new crystalline silicate features. We
computed our model spectrum by using 3D radiative transfer code MCMax. Our
model calculation shows that dust is dominated by amorphous silicates, with
some crystalline silicates, metallic iron, and a very tiny amount of polycyclic
aromatic hydrocarbon (PAH) molecules. The presence of both silicates and PAHs
indicates that the dust has a mixed chemistry. We derived a dust mass of 0.01
M, from which we arrive at a total ejected mass of 5
M. This implies a time-averaged dust mass-loss rate of
2.510 M\,yr with an explosion about 4000 years
ago. We assume that the other five confirmed dusty LBVs in the LMC loose mass
at a similar rate, and estimate the total contribution to the mass budget of
the LMC to be 10 M\,yr, which is comparable to
the contribution by all the AGB stars in the LMC. Based on our analysis on R71,
we speculate that LBVs as a class may be an important dust source in the ISM of
the LMC.Comment: 10 pages, 6 figures, 2 table
Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle
peer-reviewedBackground
Negative energy balance (NEB), an altered metabolic state, occurs in early postpartum dairy cattle when energy demands to support lactation exceed energy intake. During NEB the liver undergoes oxidative stress and increased breakdown of fatty acids accompanied by changes in gene expression. It is now known that micro RNAs (miRNA) can have a role in mediating such alterations in gene expression through repression or degradation of target mRNAs. miRNA expression is known to be altered by metabolism and environmental factors and miRNAs are implicated in expression modulation of metabolism related genes.
Results
miRNA expression was profiled in the liver of moderate yielding dairy cattle under severe NEB (SNEB) and mild NEB (MNEB) using the Affymetrix Gene Chip miRNA_2.0 array with 679 probe sets for Bos-taurus miRNAs. Ten miRNAs were found to be differentially expressed using the ‘samr’ statistical package (delta = 0.6) at a q-value FDR of < 12%. Five miRNAs including miR-17-5p, miR-31, miR-140, miR-1281 and miR-2885 were validated using RT-qPCR, to be up-regulated under SNEB. Liver diseases associated with these miRNAs include non-alcoholic fatty liver (NAFLD) and hepatocellular carcinoma (HCC). miR-140 and miR-17-5p are known to show differential expression under oxidative stress. A total of 32 down-regulated putative target genes were also identified among 418 differentially expressed hepatic genes previously reported for the same animal model. Among these, GPR37 (G protein-coupled receptor 37), HEYL (hairy/enhancer-of-split related with YRPW motif-like), DNJA1, CD14 (Cluster of differentiation 14) and GNS (glucosamine (N-acetyl)-6-sulfatase) are known to be associated with hepatic metabolic disorders. In addition miR-140 and miR-2885 have binding sites on the most down-regulated of these genes, FADS2 (Fatty acid desaturase 2) which encodes an enzyme critical in lipid biosynthesis. Furthermore, HNF3-gamma (Hepatocyte nuclear factor 3-gamma), a hepatic transcription factor (TF) that is involved in IGF-1 expression regulation and maintenance of glucose homeostasis is a putative target of miR-31.
Conclusions
This study shows that SNEB affects liver miRNA expression and these miRNAs have putative targets in hepatic genes down-regulated under this condition. This study highlights the potential role of miRNAs in transcription regulation of hepatic gene expression during SNEB in dairy cattle.
Background
Negative energy balance (NEB), an altered metabolic state, occurs in early postpartum dairy cattle when energy demands to support lactation exceed energy intake. During NEB the liver undergoes oxidative stress and increased breakdown of fatty acids accompanied by changes in gene expression. It is now known that micro RNAs (miRNA) can have a role in mediating such alterations in gene expression through repression or degradation of target mRNAs. miRNA expression is known to be altered by metabolism and environmental factors and miRNAs are implicated in expression modulation of metabolism related genes.
Results
miRNA expression was profiled in the liver of moderate yielding dairy cattle under severe NEB (SNEB) and mild NEB (MNEB) using the Affymetrix Gene Chip miRNA_2.0 array with 679 probe sets for Bos-taurus miRNAs. Ten miRNAs were found to be differentially expressed using the ‘samr’ statistical package (delta = 0.6) at a q-value FDR of < 12%. Five miRNAs including miR-17-5p, miR-31, miR-140, miR-1281 and miR-2885 were validated using RT-qPCR, to be up-regulated under SNEB. Liver diseases associated with these miRNAs include non-alcoholic fatty liver (NAFLD) and hepatocellular carcinoma (HCC). miR-140 and miR-17-5p are known to show differential expression under oxidative stress. A total of 32 down-regulated putative target genes were also identified among 418 differentially expressed hepatic genes previously reported for the same animal model. Among these, GPR37 (G protein-coupled receptor 37), HEYL (hairy/enhancer-of-split related with YRPW motif-like), DNJA1, CD14 (Cluster of differentiation 14) and GNS (glucosamine (N-acetyl)-6-sulfatase) are known to be associated with hepatic metabolic disorders. In addition miR-140 and miR-2885 have binding sites on the most down-regulated of these genes, FADS2 (Fatty acid desaturase 2) which encodes an enzyme critical in lipid biosynthesis. Furthermore, HNF3-gamma (Hepatocyte nuclear factor 3-gamma), a hepatic transcription factor (TF) that is involved in IGF-1 expression regulation and maintenance of glucose homeostasis is a putative target of miR-31.
Conclusions
This study shows that SNEB affects liver miRNA expression and these miRNAs have putative targets in hepatic genes down-regulated under this condition. This study highlights the potential role of miRNAs in transcription regulation of hepatic gene expression during SNEB in dairy cattle
A note on heat and mass transfer from a sphere in Stokes\ud flow at low Péclet number
We consider the low Péclet number, Pe ≪ 1, asymptotic solution for steady-state heat and mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of van Dyke’s rule up to terms of O(Pe3) shows that the O(Pe3 log Pe) terms in the expression for the average Nusselt/Sherwood number are double those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase significantly the range of validity of the expansion
Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers
Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging
Functional outcome of patients with spinal cord injury: rehabilitation outcome study
Objective: To increase our knowledge of neurological recovery and functional outcome of patients with spinal cord injuries in order to make more successful rehabilitation programmes based on realistic goals.Design: Descriptive analysis of data gathered in an information system.Setting: Rehabilitation centre in The Netherlands with special department for patients with spinal cord injuries.Subjects: Fifty-five patients with traumatic spinal cord lesions admitted to the rehabilitation centre from 1988 to 1994. Main outcome measures: The functional improvement was presented in terms of progress in independence in nine daily activity skills. Independence was rated on a four-point scale.Results: From admission to discharge, lesions in 100% of patients with tetraplegia and 96% of patients with paraplegia remained complete. Significant progress in independence was made in self-care, ambulation and bladder and bowel care. Differences were found in the extent of functional improvement between subgroups of patients with different levels and extent of lesion. Contrary to expectations based on theoretical models, patients with complete paraplegia did not achieve maximal independence in self-care. Independent walking was only attained by patients with incomplete lesions. Regarding outcome of bladder and bowel care, poor results were found, especially the independence in defaecation and toilet transfers.Conclusions: The results of this study provided more insight into the functional outcome of a group of patients with traumatic spinal cord injury. More research is needed to evaluate the rehabilitation programmes for these patients
The absence of the 10 um silicate feature in the isolated Herbig Ae star HD 100453
We analyse the optical and IR spectra, as well as the spectral energy
distribution (UV to mm) of the candidate Herbig Ae star HD100453. This star is
particular, as it shows an energy distribution similar to that of other
isolated Herbig Ae/Be stars (HAEBEs), but unlike most of them, it does not have
a silicate emission feature at 10 um, as is shown in Meeus (2001). We confirm
the HAEBE nature of HD100453 through an analysis of its optical spectrum and
derived location in the H-R diagram. The IR spectrum of HD100453 is modelled by
an optically thin radiative transfer code, from which we derive constraints on
the composition, grain-size and temperature distribution of the circumstellar
dust. We show that it is both possible to explain the lack of the silicate
feature as (1) a grain-size effect - lack of small silicate grains, and (2) a
temperature effect - lack of small, hot silicates, as proposed by Dullemond
(2001), and discuss both possibilities.Comment: 9 pages, 7 figures; accepted by A&
Location and sizes of forsterite grains in protoplanetary disks: interpretation from the Herschel DIGIT programme
The spectra of protoplanetary disks contain mid- and far- infrared emission
features produced by forsterite dust grains. The spectral features contain
information about the forsterite temperature, chemical composition and grain
size. We aim to characterize how the 23 and 69 micron features can be used to
constrain the physical locations of forsterite in disks. We check for
consistency between two independent forsterite temperature measurements: the
23/69 feature strength ratio and the shape of the 69 micron band. We performed
radiative transfer modeling to study the effect of disk properties to the
forsterite spectral features. Temperature-dependent forsterite opacities were
considered in self-consistent models to compute forsterite emission from
protoplanetary disks. Modelling grids are presented to study the effects of
grain size, disk gaps, radial mixing and optical depth to the forsterite
features. Independent temperature estimates derived from the 23/69 feature
strength ratio and the 69 micron band shape are most inconsistent for HD141569
and Oph IRS 48. A case study of the disk of HD141569 shows two solutions to fit
the forsterite spectrum. A model with T ~ 40 K, iron-rich (~0-1 % Fe) and 1
micron forsterite grains, and a model with warmer (T ~ 100 K), iron-free, and
larger (10 micron) grains. We find that for disks with low upper limits of the
69 micron feature (most notably in flat, self-shadowed disks), the forsterite
must be hot, and thus close to the star. We find no correlation between disk
gaps and the presence or absence of forsterite features. We argue that the 69
micron feature of the evolved transitional disks HD141569 and Oph IRS 48 is
most likely a tracer of larger (i.e. ~10 micron) forsterite grains.Comment: Accepted for publication in A&A. 14 pages, 9 figure
Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle
peer-reviewedBackground
In both beef and dairy cattle, the majority of early embryo loss occurs within the first 14 days following insemination. During this time-period, embryos are completely dependent on their maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to their survival. The objective of this study was to investigate whether differences in endometrial gene expression during the mid-luteal phase of the estrous cycle exist between crossbred beef heifers ranked as either high (HF) or low fertility (LF) (following four rounds of artificial insemination (AI)) using the Affymetrix® 23 K Bovine Gene Chip.
Results
Conception rates for each of the four rounds of AI were within a normal range: 70–73.3%. Microarray analysis of endometrial tissue collected on day 7 of the estrous cycle detected 419 differentially expressed genes (DEG) between HF (n = 6) and LF (n = 6) animals. The main gene pathways affected were, cellular growth and proliferation, angiogenesis, lipid metabolism, cellular and tissue morphology and development, inflammation and metabolic exchange. DEG included, FST, SLC45A2, MMP19, FADS1 and GALNT6.
Conclusions
This study highlights, some of the molecular mechanisms potentially controlling uterine endometrial function during the mid-luteal phase of the estrous cycle, which may contribute to uterine endometrial mediated impaired fertility in cattle. Differentially expressed genes are potential candidate genes for the identification of genetic variation influencing cow fertility, which may be incorporated into future breeding programmes.Teagasc Walsh Fellowship Programm
Ethylene production, cluster root formation, and localization of iron(III) reducing capacity in Fe deficient squash roots
Dicots and non-graminaceous monocots have the ability to increase root iron(III) reducing capacity in response to iron (Fe) deficiency stress. In squash (Cucurbita pepo L.) seedlings, Fe(III) reducing capacity was quantified during early vegetative growth. When plants were grown in Fe-free solution, the Fe(III) reducing capacity was greatly elevated, reached peak activity on day 4, then declined through day 6. Root ethylene production exhibited a temporal pattern that closely matched that of Fe(III) reducing capacity through day 6. On the 7th day of Fe deficiency, cluster root morphology developed, which coincided with a sharp increase in the root Fe(III) reducing capacity, although ethylene production decreased. Localization of Fe(III) reducing capacity activity was observed during the onset of Fe deficiency and through the development of the root clusters. It was noted that localization shifted from an initial pattern which occurred along the main and primary lateral root axes, excluding the apex, to a final localization pattern in which the reductase appeared only on secondary laterals and cluster rootlets
- …