2,054 research outputs found

    FRW Universe Models in Conformally Flat Spacetime Coordinates. I: General Formalism

    Full text link
    The 3-space of a universe model is defined at a certain simultaneity. Hence space depends on which time is used. We find a general formula generating all known and also some new transformations to conformally flat spacetime coordinates. A general formula for the recession velocity is deduced.Comment: 12 page

    FRW Universe Models in Conformally Flat Spacetime Coordinates. II: Universe models with negative and vanishing spatial curvature

    Full text link
    We deduce general expressions for the line element of universe models with negative and vanishing spatial curvature described by conformally flat spacetime coordinates. The empty Milne universe model and models with dust, radiation and vacuum energy are exhibited. Discussing the existence of particle horizons we show that there is continual creation of space, matter and energy when conformal time is used in Friedmann-Robertson-Walker models with negative spatial curvature.Comment: 25 pages, 12 figure

    The angular power spectrum of radio emission at 2.3 GHz

    Get PDF
    We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scalesComment: 10 pages, 10 figures, accepted for publication by Astronomy & Astrophysic

    Analysis of CMB foregrounds using a database for Planck

    Get PDF
    Within the scope of the Planck IDIS (Integrated Data Information System) project we have started to develop the data model for time-ordered data and full-sky maps. The data model is part of the Data Management Component (DMC), a software system designed according to a three-tier architecture which allows complete separation between data storage and processing. The DMC is already being used for simulation activities and the modeling of some foreground components. We have ingested several Galactic surveys into the database and used the science data-access interface to process the data. The data structure for full-sky maps utilises the HEALPix tessellation of the sphere. We have been able to obtain consistent measures of the angular power spectrum of the Galactic radio continuum emission between 408 MHz and 2417 MHz.Comment: 7 pages, 6 figures. To appear in the Proceedings of the MPA/ESO/MPE Joint Astronomy Conference "Mining The Sky

    Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit

    Get PDF
    The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure

    A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology

    Get PDF
    Data with high security requirements is being processed and stored with increasing frequency in the Cloud. To guarantee that the data is being dealt in a secure manner we investigate the applicability of Assurance methodologies. In a typical Cloud environment the setup of multiple layers and different stakeholders determines security properties of individual components that are used to compose Cloud applications. We present a methodology adapted from Common Criteria for aggregating information reflecting the security properties of individual constituent components of Cloud applications. This aggregated information is used to categorise overall application security in terms of Assurance Levels and to provide a continuous assurance level evaluation. It gives the service owner an overview of the security of his service, without requiring detailed manual analyses of log files

    Comparison of calculated and measured velocities near the tip of a model rotor blade at transonic speeds

    Get PDF
    The ability of the ROT22 code to predict accurately the transonic flow field in the crucial region around and beyond the tip of a high speed rotor blade was assessed. The computations were compared with extensive laser velocimetry measurements made at zero advance ratio and tip Mach numbers of 0.85, 0.88, 0.90, and 0.95. The comparison between theory and experiment was made using 300 scans for the three orthogonal velocity components covering a volume having a height of over one blade chord, a width of nearly two chords, and a length ranging from about 1 to 1.6 chords, depending on the tip speeds. The good agreement between the calculated and measured velocities established the ability of the code to predict the off blade flow field at high tip speeds. This supplements previous comparisons where surface pressures were shown to be well predicted on two different tips at advance ratios to 0.45, especially at the critical 90 deg azimuth blade position. These results demonstrate that the ROT22 code can be used with confidence to predict the important tip region flow field including the occurrence, strength, and location of shock waves causing high drag and noise

    A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds

    Full text link
    We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-mass star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table

    Photoperiod-Dependent Expression of MicroRNA in Drosophila.

    Get PDF
    Like many other insects in temperate regions, Drosophila melanogaster exploits the photoperiod shortening that occurs during the autumn as an important cue to trigger a seasonal response. Flies survive the winter by entering a state of reproductive arrest (diapause), which drives the relocation of resources from reproduction to survival. Here, we profiled the expression of microRNA (miRNA) in long and short photoperiods and identified seven differentially expressed miRNAs (dme-mir-2b, dme-mir-11, dme-mir-34, dme-mir-274, dme-mir-184, dme-mir-184*, and dme-mir-285). Misexpression of dme-mir-2b, dme-mir-184, and dme-mir-274 in pigment-dispersing, factor-expressing neurons largely disrupted the normal photoperiodic response, suggesting that these miRNAs play functional roles in photoperiodic timing. We also analyzed the targets of photoperiodic miRNA by both computational predication and by Argonaute-1-mediated immunoprecipitation of long- and short-day RNA samples. Together with global transcriptome profiling, our results expand existing data on other Drosophila species, identifying genes and pathways that are differentially regulated in different photoperiods and reproductive status. Our data suggest that post-transcriptional regulation by miRNA is an important facet of photoperiodic timing

    Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: a re-analysis of the Parkes data

    Get PDF
    We have analysed the angular power spectra of the Parkes radio continuum and polarisation survey of the Southern galactic plane at 2.4 GHz. We have found that in the multipole range l=40-250 the angular power spectrum of the polarised intensity is well described by a power-law spectrum with fitted spectral index alpha_L = 2.37 +- 0.21. In the same multipole range the angular power spectra of the E and B components of the polarised signal are significantly flatter, with fitted spectral indices respectively of alpha_E = 1.57 +- 0.12 and alpha_B = 1.45 +- 0.12. Temperature fluctuations in the E and B components are mostly determined by variations in polarisation angle. We have combined these results with other data from available radio surveys in order to produce a full-sky toy model of Galactic synchrotron intensity and linear polarisation at high frequencies (> 10 GHz). This can be used to study the feasibility of measuring the Cosmic Microwave Background polarisation with forthcoming experiments and satellite missions.Comment: 17 pages, 11 figures. Accepted for publication in A&A. Paper with higher quality images available at ftp://astro.esa.int/pub/synchrotron/paper.ps.g
    corecore