211 research outputs found
Consequences of the marine climate and ecosystem shift of the 1980-90s on the Ligurian Sea biodiversity (NW Mediterranean Sea)
A rapid temperature increase in the 1980-90s has been accompanied by dramatic and unprecedented changes in the biota and communities of the Ligurian Sea. This review uses existing historical series (a few of which have been purposely updated) to assess extent and consequences of such changes. A number of warm-water species, previously absent or occasional in the comparatively cold Ligurian Sea, has recently established thanks to warmer winters. Occurrence among them of invasive alien species is causing concern because of their capacity of outcompeting autochthonous species. Summer heatwaves, on the other hand, caused mass mortalities in marine organisms, some of which found refuge at depth. New marine diseases appeared, as well as other dysfunctions such as the formation of mucilage aggregates that suffocated and entangled benthic organisms. Human pressures have combined with climate change to cause phase shifts (i.e., abrupt variations in species composition and community structure) in different habitats, such as the pelagic environment, seagrass meadows, rocky reefs, and marine caves. These phase shifts implied biotic homogenization, reduction of diversity, and dominance by invasive aliens, and may be detrimental to the resilience of Ligurian Sea ecosystems. Another phase of rapid warming has possibly started in the 2010s and there are clues pointing to a further series of biological changes, but data are too scarce to date for proper assessment. Only well addressed long-term studies will help understanding the future dynamics of Ligurian Sea ecosystems and their possibilities of recovery
Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli
Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens
Complete Sequencing of the blaNDM-1-Positive IncA/C Plasmid from Escherichia coli ST38 Isolate Suggests a Possible Origin from Plant Pathogens
The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with blaCMY-2-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The blaNDM-1 gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the blaNDM-1 gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the blaNDM-1-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the blaNDM-1 gene. The complete sequence of pNDM-1_Dok01 suggests that the blaNDM-1 gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate
Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic Escherichia coli.
In this paper, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy is able to discriminate rapidly between uropathogenic Escherichia coli (UPEC) of key lineages with only relatively simple sample preparation. A total of 95 bacteria from six different epidemiologically important multilocus sequence types (ST10, ST69, ST95, ST73, ST127 and ST131) were used in this project and principal component-discriminant function analysis (PC-DFA) of these samples produced clear separate clustering of isolates, based on the ST. Analysis of data using partial least squares-discriminant analysis (PLS-DA), incorporating cross-validation, indicated a high prediction accuracy of 91.19% for ST131. These results suggest that FT-IR spectroscopy could be a useful method for the rapid identification of members of important UPEC STs
The Complete Genome Sequence of Escherichia coli EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug Resistant E. coli O25b:H4-ST131 Clone
Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage
Daily rhythms of the sleep-wake cycle
The amount and timing of sleep and sleep architecture (sleep stages) are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake) and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'). The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population); and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes) are examined
Genetic relatedness among isolates of Shigella sonnei carrying class 2 integrons in Tehran, Iran, 2002–2003
<p>Abstract</p> <p>Background</p> <p><it>Shigella </it>spp. are major cause of diarrhoeal disease in both developing and developed countries. <it>Shigella sonnei </it>is the serogroup of <it>Shigella </it>most frequently responsible for sporadic and epidemic enteritis in developed countries. In recent years the emergence and spread of <it>S. sonnei </it>biotype g carrying class 2 integron have been frequently reported in many countries. Recently, <it>S. sonnei </it>has been reported as the prevalent serogroup of <it>Shigella </it>in Iran.</p> <p>The present study was carried out to investigate phenotypic and genetic characteristics of <it>Shigella sonnei </it>isolates identified in the years 2002 and 2003 in Tehran, Iran.</p> <p>Methods</p> <p>Biotyping, drug susceptibility testing, pulsed field gel electrophoresis (PFGE) and analysis of class 2 integrons have been carried out on 60 <it>S. sonnei </it>isolates, including 57 sporadic isolates from paediatric cases of shigellosis occurring in 2002 and 2003, two sporadic isolates recovered in 1984 and the ATCC 9290 strain.</p> <p>Results</p> <p>Biotype g and resistance to streptomycin, sulfamethoxazole-trimethoprim and tetracycline were exhibited by 54 of the 57 recent isolates. Of the 54 biotype g isolates, 28 exhibited a class 2 integron of 2161 bp, and 24 a class 2 integron of 1371 bp, respectively. Class 2 integrons were not detected in four isolates only, including the two endemic isolates recovered in 1984 and two strains from recent sporadic cases. PFGE divided the strains into eight pulsotypes labeled A to H, three major pulsotypes – A to C – including the large majority of the recent sporadic <it>S. sonnei </it>isolates. Pulsotypes A and C were the most prevalent groups, accounting for 41.6% and 35.0%, respectively, of the isolates under study.</p> <p>Conclusion</p> <p>The results suggest that biotype g, class 2 integron carrying <it>S. sonnei </it>are prevalent in our geographic area. <it>S. sonnei </it>isolated in the years 2002 and 2003 could be attributed to a few predominant clusters including, respectively, strains with pulsotypes B and C carrying a 2161 bp class 2 integron, and those having pulsotype A and a 1371 bp class 2 integron. A few epidemic clones are responsible for the apparently endemic occurrence of shigellosis in Tehran, Iran.</p
Whole genome sequencing,molecular typing and in vivovirulence of OXA-48-producingEscherichia coli isolates includingST131 H30-Rx, H22 and H41subclones
Carbapenem-resistant Enterobacteriaceae, including the increasingly reported OXA-48 Escherichia coli producers, are an emerging public health threat worldwide. Due to their alarming detection in our healthcare setting and their possible presence in the community, seven OXA-48-producing, extraintestinal pathogenic E. coli were analysed by whole genome sequencing as well as conventional tools, and tested for in vivo virulence. As a result, five E. coli OXA-48-producing subclones were detected (O25:H4-ST131/PST43-fimH30-virotype E; O25:H4-ST131/PST9-fimH22-virotype D5, O16:H5-ST131/ PST506-fimH41; O25:H5-ST83/PST207 and O9:H25-ST58/PST24). Four ST131 and one ST83 isolates satisfied the ExPEC status, and all except the O16:H5 ST131 isolate were UPEC. All isolates exhibited local inflammatory response with extensive subcutaneous necrosis but low lethality when tested in a mouse sepsis model. The blaOXA-48 gene was located in MOBP131/IncL plasmids (four isolates) or within the chromosome (three ST131 H30-Rx isolates), carried by Tn1999-like elements. All, except the ST83 isolate, were multidrug-resistant, with additional plasmids acting as vehicles for the spread of various resistance genes. This is the first study to analyse the whole genome sequences of blaOXA-48-positive ST131, ST58 and ST83 E. coli isolates in conjunction with experimental data, and to evaluate the in vivo virulence of blaOXA-48 isolates, which pose an important challenge to patient management
- …