668 research outputs found
The Parasitoid Complex of Forest Tent Caterpillar, \u3ci\u3eMalacosoma Disstria\u3c/i\u3e (Lepidoptera: Lasiocampidae), in Eastern Wyoming Shelterbelts
A parasitoid complex affecting the forest tent caterpillar, Malacosoma disstria, was investigated during 1978-79 in shelterbelts in eastern Wyoming. Egg parasitoids included five species: Ablerus clisiocampae, Ooencyrtus clisiocampae, Telenomus clisiocampae, Tetrastichus sp. 1 and Telenomus sp. Thirteen hymenopterous species and five dipterous species were reared from larvae and pupae of the forest tent caterpillar. The most common 5th-instar larval parasitoids were the tachinid flies, Lespesia archippivora and Archytas lateralis. Of the pupal parasitoids reared, 640/0 were Diptera and 36% were Hymenoptera. Four previously unrecorded parasitoids of M. disstria were reared: Cotesia alalantae, Macrocentrus irridescens, Pimpla sanguinipes erythropus, and Lespesia flavifrons.
Systemic absorption of oral vancomycin in a peripheral blood stem cell transplant patient with severe graft-versus-host disease of the gastrointestinal tract
Oral vancomycin is often considered the drug of choice for severe Clostridium difficile- associated disease due to both its efficacy and pharmacokinetics. The potential for absorption is not well described in patients with impaired gastrointestinal (GI) mucosa. We describe a case of significant and potentially toxic absorption of oral vancomycin in a peripheral blood stem cell transplant patient with grade IV graft-versus-host disease (GVHD) of the GI tract. In patients with GI GVHD clinicians need to be aware of the potential for oral absorption and, in select cases, monitoring of levels may be appropriate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74898/1/j.1399-3062.2009.00426.x.pd
Nonlinear Dynamics of Human Aortas for Material Characterization
Evaluating the nonlinear dynamics of human descending thoracic aortas is essential for building the next generation of vascular prostheses. This study characterizes the nonlinear dynamics, viscoelastic material properties, and fluid-structure interaction of 11 ex-vivo human descending thoracic aortas the full range of physiological heart rates. The aortic segments are harvested from heart-beating donors screened for transplants. A mock circulatory loop is developed to reproduce physiological pulsatile pressure and flow. The results show cyclic axisymmetric diameter changes, which are satisfactorily compared to in-vivo measurements at a resting pulse rate of 60 bpm, with an additional bending vibration. An increase of the dynamic stiffness (i.e., storage modulus) with age is also observed. This increase is accompanied by a strong reduction with age of the cyclic diameter change during the heart pulsation at 60 bpm and by a significant reduction of the loss factor (i.e., damping). Large dissipation is observed at higher pulse rates due to the combined effects of fluid-structure interaction and viscoelasticity of the aortic wall. This study presents data necessary for developing innovative grafts that better mimic the dynamics of the aorta
In Vitro Assessment of Combined Polymyxin B and Minocycline Therapy against Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae
ABSTRACT The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination
Performance Assessment of Diffuse Optical Spectroscopic Imaging Instruments in a 2-Year Multicenter Breast Cancer Trial
We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed \u3c 0.0010 mm−1 (10.3%) and 0.06 mm−1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging
Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer
Background:Patients with pancreatic cancer have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) produces localised tissue necrosis but previous studies using the photosensitiser meso-tetrahydroxyphenylchlorin (mTHPC) caused prolonged skin photosensitivity. This study assessed a shorter acting photosensitiser, verteporfin.Methods: Fifteen inoperable patients with locally advanced cancers were sensitised with 0.4 mg kg-1 verteporfin. After 60-90 min, laser light (690 nm) was delivered via single (13 patients) or multiple (2 patients) fibres positioned percutaneously under computed tomography (CT) guidance, the light dose escalating (initially 5 J, doubling after each three patients) until 12 mm of necrosis was achieved consistently.Results:In all, 12 mm lesions were seen consistently at 40 J, but with considerable variation in necrosis volume (mean volume 3.5 cm 3 at 40 J). Minor, self-limiting extrapancreatic effects were seen in multifibre patients. No adverse interactions were seen in patients given chemotherapy or radiotherapy before or after PDT. After PDT, one patient underwent an R0 Whipple's pancreaticoduodenectomy.Conclusions:Verteporfin PDT-induced tumour necrosis in locally advanced pancreatic cancer is feasible and safe. It can be delivered with a much shorter drug light interval and with less photosensitivity than with older compounds. © 2014 Cancer Research UK
Intraovarian injection of mesenchymal stem cells improves oocyte yield and in vitro embryo production in a bovine model of fertility loss.
Valuable female cattle are continuously subject to follicular puncture (ovum pick-up - OPU). This technique is commonly used for in-vitro embryo production, but may result in ovarian lesion. Mesenchymal stem cells (MSC) ameliorate the function of injured tissues, but their use to treat ovarian lesions in cattle has not been established. We investigated whether a local injection of MSC would reduce the negative efects of repeated OPU under acute and chronic scenarios in bovines. First, we performed four OPU sessions and injected 2.5×106 MSCs immediately after the 4th OPU procedure (n=5). The treated organs (right ovary) were compared to their saline-treated counterparts (left), and presented superior production of oocytes and embryos in the three following OPU sessions (P<0.05). Then, cows with progressive fertility loss went through three OPU sessions. Animals received MSC, saline, or MSC+FSH in both ovaries after the frst OPU. In the two following OPU sessions, the MSC and MSC +FSH - treated groups failed to present any signifcant alteration in the number of oocytes and embryos compared to saline-treated animals. Thus, MSC have benefcial efects on the fertility of OPUlesioned cows, but not in cows with cystic ovarian disease and chronic ovarian lesions
- …