13 research outputs found
Effect of intergranular glass films on the electrical conductivity of 3Y-TZP
The electrical conductivity of 3Y-TZP ceramics containing SiO2 and Al2O3 has been investigated by complex impedance spectroscopy between 500 and 1270 K. At low temperatures, the total electrical conductivity is suppressed by the grain boundary glass films. The equilibrium thickness of intergranular films is 1-2 nm, as derived using the "brick-layerâ model and measured by HRTEM. A change in the slope of the conductivity Arrhenius plots occurs at the characteristic temperature Tb at which the macroscopic grain boundary resistivity has the same value as the resistivity of the grains. The temperature dependence of the conductivity is discussed in terms of a series combination of RC element
Effect of intergranular glass films on the electrical conductivity of 3Y-TZP
ISSN:0884-2914ISSN:2044-532
Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes
Doped ceria (CeO2) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for `low (500 degrees-650 degrees C)' temperature operation of solid oxide fuel cells (SOFCs). In this study, some rare earth (eg. Gd, Sm, and Dy) doped CeO2 nano-powders were synthesized via a carbonate co-precipitation method. Fluorite-type solid solution were able to be formed at low temperature, such as 400 degrees C and dense sintered bodies were subsequently fabricated in the temperature ranging from 1000 degrees to 1450 degrees C by conventional sintering (CS) method. To develop high quality solid electrolytes, the microstructure at the atomic level of these doped CeO2 solid electrolytes were examined using transmission electron microscopy (TEM). The specimens obtained by CS had continuous and large micro-domains with a distorted pyrochlore structure or related structure, within each grain. We conclude that the conducting properties in these doped CeO2 systems are strongly influenced by the micro-domain size in the grain. To minimize the micro-domain size, spark plasma sintering (SPS) was examined. SPS has not been used to fabricate dense sintered bodies of doped CeO2 electrolytes, previously; carbon from the graphite dies penetrates the specimens and inhibits densification. To overcome this challenge, and to be able to produce dense sintered bodies of doped CeO2 of a grain size that minimizes the microdomain growth, a combination of SPS and CS methods were examined. Using this combined method we report that we were able to produce fully dense specimens with improved conductivity. This is correlated with a reduction in the size of the micro-domains. Consequently we conclude that the control of micro-domain size within the grain structure is a key component in the successful design of electrolyte materials with improved conductivity