836 research outputs found
Landau-Fermi liquid analysis of the 2D t-t' Hubbard model
We calculate the Landau interaction function f(k,k') for the two-dimensional
t-t' Hubbard model on the square lattice using second and higher order
perturbation theory. Within the Landau-Fermi liquid framework we discuss the
behavior of spin and charge susceptibilities as function of the onsite
interaction and band filling. In particular we analyze the role of elastic
umklapp processes as driving force for the anisotropic reduction of the
compressibility on parts of the Fermi surface.Comment: 10 pages, 16 figure
Spatially Resolved NMR Relaxation Rate in a Noncentrosymmetric Superconductor
We numerically study the spatially-resolved NMR around a single vortex in a
noncentrosymmetric superconductor such as CePt3Si.
The nuclear spin-lattice relaxation rate 1/T1 under the influence of the
vortex core states is calculated for an s+p-wave Cooper pairing state.
The result is compared with that for an s-wave pairing state.Comment: 2 pages; submitted to Proc. of SCES'0
Temperature Dependence of the Superfluid Density in a Noncentrosymmetric Superconductor
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper
pairing model with a two-component order parameter composed of spin-singlet and
spin-triplet pairing components.
We calculate the superfluid density tensor in the clean limit on the basis of
the quasiclassical theory of superconductivity.
We demonstrate that such a pairing model accounts for an experimentally
observed feature of the temperature dependence of the London penetration depth
in CePt3Si, i.e., line-node-gap behavior at low temperatures.Comment: 10 page
Basic Properties of a Vortex in a Noncentrosymmetric Superconductor
We numerically study the vortex core structure in a noncentrosymmetric
superconductor such as CePt3Si without mirror symmetry about the xy plane.
A single vortex along the z axis and a mixed singlet-triplet Cooper pairing
model are considered.
The spatial profiles of the pair potential, local density of states,
supercurrent density, and radially-textured magnetic moment density around the
vortex are obtained in the clean limit on the basis of the quasiclassical
theory of superconductivity.Comment: 6 pages; submitted to Proc. of VORTEX I
Superconductivity without Local Inversion Symmetry; Multi-layer Systems
While multi-layer systems can possess global inversion centers, they can have
regions with locally broken inversion symmetry. This can modify the
superconducting properties of such a system. Here we analyze two dimensional
multi-layer systems yielding spatially modulated antisymmetric spin-orbit
coupling (ASOC) and discuss superconductivity with mixed parity order
parameters. In particular, the influence of ASOC on the spin susceptibility is
investigated at zero temperature. For weak inter-layer coupling we find an
enhanced spin susceptibility induced by ASOC, which hints the potential
importance of this aspect for superconducting phase in specially structured
superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference
on Low Temperature Physics (LT26
SMT-based Verification of LTL Specifications with Integer Constraints and its Application to Runtime Checking of Service Substitutability
An important problem that arises during the execution of service-based
applications concerns the ability to determine whether a running service can be
substituted with one with a different interface, for example if the former is
no longer available. Standard Bounded Model Checking techniques can be used to
perform this check, but they must be able to provide answers very quickly, lest
the check hampers the operativeness of the application, instead of aiding it.
The problem becomes even more complex when conversational services are
considered, i.e., services that expose operations that have Input/Output data
dependencies among them. In this paper we introduce a formal verification
technique for an extension of Linear Temporal Logic that allows users to
include in formulae constraints on integer variables. This technique applied to
the substitutability problem for conversational services is shown to be
considerably faster and with smaller memory footprint than existing ones
Constraint LTL Satisfiability Checking without Automata
This paper introduces a novel technique to decide the satisfiability of
formulae written in the language of Linear Temporal Logic with Both future and
past operators and atomic formulae belonging to constraint system D (CLTLB(D)
for short). The technique is based on the concept of bounded satisfiability,
and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of
quantifier-free equality and uninterpreted functions combined with D. Similarly
to standard LTL, where bounded model-checking and SAT-solvers can be used as an
alternative to automata-theoretic approaches to model-checking, our approach
allows users to solve the satisfiability problem for CLTLB(D) formulae through
SMT-solving techniques, rather than by checking the emptiness of the language
of a suitable automaton A_{\phi}. The technique is effective, and it has been
implemented in our Zot formal verification tool.Comment: 39 page
Bounded Reachability for Temporal Logic over Constraint Systems
We present CLTLB(D), an extension of PLTLB (PLTL with both past and future
operators) augmented with atomic formulae built over a constraint system D.
Even for decidable constraint systems, satisfiability and Model Checking
problem of such logic can be undecidable. We introduce suitable restrictions
and assumptions that are shown to make the satisfiability problem for the
extended logic decidable. Moreover for a large class of constraint systems we
propose an encoding that realize an effective decision procedure for the
Bounded Reachability problem
Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry
Theoretical studies of a planar tunnel junction between two superconductors
with antisymmetric spin-orbit coupling are presented. The half-space Green's
function for such a superconductor is determined. This is then used to derive
expressions for the dissipative current and the Josephson current of the
junction. Numerical results are presented in the case of the Rashba spin-orbit
coupling, relevant to the much studied compound CePtSi. Current-voltage
diagrams, differential conductance and the critical Josephson current are
presented for different crystallographic orientations and different weights of
singlet and triplet components of the pairing state. The main conclusion is
that Josephson junctions with different crystallographic orientations may
provide a direct connection between unconventional pairing in superconductors
of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure
- …