175 research outputs found

    Static NLO susceptibilities: testing approximation schemes against exact results

    Get PDF
    The reliability of the approximations commonly adopted in the calculation of static optical (hyper)polarizabilities is tested against exact results obtained for an interesting toy-model. The model accounts for the principal features of typical nonlinear organic materials with mobile electrons strongly coupled to molecular vibrations. The approximations introduced in sum over states and finite field schemes are analyzed in detail. Both the Born-Oppenheimer and the clamped nucleus approximations turn out to be safe for molecules, whereas for donor-acceptor charge transfer complexes deviations from adiabaticity are expected. In the regime of low vibrational frequency, static susceptibilities are strongly dominated by the successive derivatives of the potential energy and large vibrational contributions to hyperpolarizabilities are found. In this regime anharmonic corrections to hyperpolarizabilities are very large, and the harmonic approximation, exact for the linear polarizability, turns out totally inadequate for nonlinear responses. With increasing phonon frequency the role of vibrations smoothly decreases, until, in the antiadiabatic (infinite vibrational frequency) regime, vibrations do not contribute anymore to static susceptibilities, and the purely electronic responses are regained.Comment: 9 pages, including 3 figure

    Tapentadol. An effective option for the treatment of back pain

    Get PDF
    Back pain, including low back pain and neck pain, is the leading cause of disability worldwide. This type of pain is challenging to treat, since it presents both a nociceptive and a neuropathic component. The latter also contributes to the evolution of pain toward chronification. Treatment selection should therefore consider the ability to prevent this event. Tapentadol is characterized by a unique and innovative peculiar mechanism of action that makes it the first representative of a new class of central strong analgesics referred to as MOR-NRI. This molecule acts both on the nociceptive and neuropathic components of pain, and it can therefore be effective in the treatment of a mixed pain condition such as back pain. This narrative review discusses the rationale for the use of tapentadol in both low back pain and neck pain and presents available clinical data. Overall, data show that tapentadol prolonged release is a well-grounded treatment for chronic back pain, sustained by a strong mechanistic rationale and robust evidence. Given also the availability of long-term efficacy and safety data, we believe that this molecule should be considered as an elective therapy for chronic back pain

    Qualidade do solo sob sistemas agroflorestais e agricultura tradicional no Bioma Floresta Atlântica.

    Get PDF
    the present study, we evaluated the influence of agroforestry systems and traditional agriculture on the physical attributes and biologicals of soil, using as reference a native forest area in Paraty, RJ. Levels of total soil organic carbon, as well as oxidizable fractions and aggregate stability, were analyzed, in addition to the activity and carbon and nitrogen content in the soil microbial biomass, in the 0?5 cm layer, in two distinct seasons (dry and rainy seasons)

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: I. Threshold Behavior in Ionic-to-Neutral Transition

    Full text link
    Photoinduced dynamics of charge density and lattice displacements is calculated by solving the time-dependent Schr\"odinger equation for a one-dimensional extended Peierls-Hubbard model with alternating potentials for the mixed-stack organic charge-transfer complex, TTF-CA. A pulse of oscillating electric field is incorporated into the Peierls phase of the transfer integral. The frequency, the amplitude, and the duration of the pulse are varied to study the nonlinear and cooperative character of the photoinduced transition. When the dimerized ionic phase is photoexcited, the threshold behavior is clearly observed by plotting the final ionicity as a function of the increment of the total energy. Above the threshold photoexcitation, the electronic state reaches the neutral one with equidistant molecules after the electric field is turned off. The transition is initiated by nucleation of a metastable neutral domain, for which an electric field with frequency below the linear absorption peak is more effective than that at the peak. When the pulse is strong and short, the charge transfer takes place on the same time scale with the disappearance of dimerization. As the pulse becomes weak and long, the dimerization-induced polarization is disordered to restore the inversion symmetry on average before the charge transfer takes place to bring the system neutral. Thus, a paraelectric ionic phase is transiently realized by a weak electric field. It is shown that infrared light also induces the ionic-to-neutral transition, which is characterized by the threshold behavior.Comment: 24 pages, 11 figure

    Supramolecular interactions in clusters of polar and polarizable molecules

    Full text link
    We present a model for molecular materials made up of polar and polarizable molecular units. A simple two state model is adopted for each molecular site and only classical intermolecular interactions are accounted for, neglecting any intermolecular overlap. The complex and interesting physics driven by interactions among polar and polarizable molecules becomes fairly transparent in the adopted model. Collective effects are recognized in the large variation of the molecular polarity with supramolecular interactions, and cooperative behavior shows up with the appearance, in attractive lattices, of discontinuous charge crossovers. The mean-field approximation proves fairly accurate in the description of the gs properties of MM, including static linear and non-linear optical susceptibilities, apart from the region in the close proximity of the discontinuous charge crossover. Sizeable deviations from the excitonic description are recognized both in the excitation spectrum and in linear and non-linear optical responses. New and interesting phenomena are recognized near the discontinuous charge crossover for non-centrosymmetric clusters, where the primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure

    Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition

    Full text link
    We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, non-linear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.Comment: 4 pages, 4 figure

    Effects of Lattice and Molecular Phonons on Photoinduced Neutral-to-Ionic Transition Dynamics in Tetrathiafulvalene-pp-Chloranil

    Full text link
    For electronic states and photoinduced charge dynamics near the neutral-ionic transition in the mixed-stack charge-transfer complex tetrathiafulvalene-pp-chloranil (TTF-CA), we review the effects of Peierls coupling to lattice phonons modulating transfer integrals and Holstein couplings to molecular vibrations modulating site energies. The former stabilizes the ionic phase and reduces discontinuities in the phase transition, while the latter stabilizes the neutral phase and enhances the discontinuities. To reproduce the experimentally observed ionicity, optical conductivity and photoinduced charge dynamics, both couplings are quantitatively important. In particular, strong Holstein couplings to form the highly-stabilized neutral phase are necessary for the ionic phase to be a Mott insulator with large ionicity. A comparison with the observed photoinduced charge dynamics indicates the presence of strings of lattice dimerization in the neutral phase above the transition temperature.Comment: 9 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp

    Can CHA2DS2-VASc and HAS–BLED Foresee the Presence of Cerebral Microbleeds, Lacunar and Non-Lacunar Infarcts in Elderly Patients With Atrial Fibrillation? Data From Strat–AF Study

    Get PDF
    Anticoagulants reduce embolic risk in atrial fibrillation (AF), despite increasing hemorrhagic risk. In this context, validity of congestive heart failure, hypertension, age ≥ 75 years, diabetes, stroke, vascular disease, age 65–74 years and sex category (CHA2DS2-VASc) and hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/alcohol concomitantly (HAS–BLED) scales, used to respectively evaluate thrombotic and hemorrhagic risks, is incomplete. In patients with AF, brain MRI has led to the increased detection of “asymptomatic” brain changes, particularly those related to small vessel disease, which also represent the pathologic substrate of intracranial hemorrhage, and silent brain infarcts, which are considered risk factors for ischemic stroke. Routine brain MRI in asymptomatic patients with AF is not yet recommended. Our aim was to test predictive ability of risk stratification scales on the presence of cerebral microbleeds, lacunar, and non-lacunar infarcts in 170 elderly patients with AF on oral anticoagulants. Ad hoc developed R algorithms were used to evaluate CHA2DS2-VASc and HAS–BLED sensitivity and specificity on the prediction of cerebrovascular lesions: (1) Maintaining original items' weights; (2) augmenting weights' range; (3) adding cognitive, motor, and depressive scores. Accuracy was poor for each outcome considering both scales either in phase 1 or phase 2. Accuracy was never improved by the addition of cognitive scores. The addition of motor and depressive scores to CHA2DS2-VASc improved accuracy for non-lacunar infarcts (sensitivity = 0.70, specificity = 0.85), and sensitivity for lacunar–infarcts (sensitivity = 0.74, specificity = 0.61). Our results are a very first step toward the attempt to identify those elderly patients with AF who would benefit most from brain MRI in risk stratification

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201
    • …
    corecore