38 research outputs found

    Low-energy excitations in electron-doped metal phthalocyanine from NMR in Li0.5_{0.5}MnPc

    Full text link
    7^7Li and 1^1H NMR and magnetization measurements in \lpc (Pc\equivC32_{32}H16_{16}N8_8), recently proposed as a strongly correlated metal, are presented. Two different low-frequency dynamics are evidenced. The first one, probed by 1^1H nuclei gives rise to a slowly relaxing magnetization at low temperature and is associated with the freezing of MnPc S=3/2S=3/2 spins. This dynamic is similar to the one observed in pristine β\beta-MnPc and originates from Li depleted chain segments. The second one, evidenced by 7^7Li spin-lattice relaxation rate, is associated with the hopping of the electrons along Li-rich chains. The characteristic correlation times for the two dynamics are derived and the role of disorder is briefly discussed.Comment: 7 two-columns pages, 11 figure

    Spin dynamics in rare earth single molecule magnets from muSR and NMR in [TbPc2_{2}]0^{0} and [DyPc2_{2}]0^{0}

    Full text link
    The spin dynamics in [TbPc2_{2}]0^{0} and [DyPc2_{2}]0^{0} single molecule magnets have been investigated by means of muon and nuclear spin-lattice relaxation rate measurements. The correlation time for the spin fluctuations was found to be close to 0.1 ms already at 50 K, about two orders of magnitude larger than the one previously found in other lanthanide based single molecule magnets. In [TbPc2_{2}]0^{0} two different regimes for the spin fluctuations have been evidenced: a high temperature activated one involving spin fluctuations across a barrier Δ880K\Delta\simeq 880 K separating the ground and first excited states and a low temperature regime involving quantum fluctuations within the twofold degenerate ground-state. In [DyPc2_{2}]0^{0} a high temperature activated spin dynamics is also evidenced which, however, cannot be explained in terms of a single spin-phonon coupling constant.Comment: 4 pages, 4 figure

    Spin and charge dynamics in [TbPc2_2]0^0 and [DyPc2_2]0^0 single molecule magnets

    Full text link
    Magnetization, AC susceptibility and μ\muSR measurements have been performed in neutral phthalocyaninato lanthanide ([LnPc2]0_2]^0) single molecule magnets in order to determine the low-energy levels structure and to compare the low-frequency spin excitations probed by means of macroscopic techniques, such as AC susceptibility, with the ones explored by means of techniques of microscopic character, such as μ\muSR. Both techniques show a high temperature thermally activated regime for the spin dynamics and a low temperature tunneling one. While in the activated regime the correlation times for the spin fluctuations estimated by AC susceptibility and μ\muSR basically agree, clear discrepancies are found in the tunneling regime. In particular, μ\muSR probes a faster dynamics with respect to AC susceptibility. It is argued that the tunneling dynamics probed by μ\muSR involves fluctuations which do not yield a net change in the macroscopic magnetization probed by AC susceptibiliy. Finally resistivity measurements in [TbPc2]0_2]^0 crystals show a high temperature nearly metallic behaviour and a low temperature activated behaviour.Comment: 8 pages, 12 figure

    Strong electronic correlations in Lix_xZnPc organic metals

    Full text link
    Nuclear magnetic resonance, electron paramagnetic resonance and magnetization measurements show that bulk Lix_xZnPc are strongly correlated one-dimensional metals. The temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 and of the static uniform susceptibility χS\chi_S on approaching room temperature are characteristic of a Fermi liquid. Moreover, while for x2x\simeq 2 the electrons are delocalized down to low temperature, for x4x\to 4 a tendency towards localization is noticed upon cooling, yielding an increase both in 1/T11/T_1 and χs\chi_s. The xx-dependence of the effective density of states at the Fermi level D(EF)D(E_F) displays a sharp enhancement for x2x\simeq 2, at the half filling of the ZnPc lowest unoccupied molecular orbitals. This suggests that Lix_xZnPc is on the edge of a metal-insulator transition where enhanced superconducting fluctuations could develop.Comment: 5 pages, 4 figure

    NMR as a probe of the relaxation of the magnetization in magnetic molecules

    Full text link
    We investigate the time autocorrelation of the molecular magnetization M(t)M(t) for three classes of magnetic molecules (antiferromagnetic rings, grids and nanomagnets), in contact with the phonon heat bath. For all three classes, we find that the exponential decay of the fluctuations of M(t)M(t), associated with the irreversible exchange of energy with the heat bath, is characterized by a single characteristic time τ(T,B)\tau (T,B) for not too high temperature TT and field BB. This is reflected in a nearly single-lorentzian shape of the spectral density of the fluctuations. We show that such fluctuations are effectively probed by NMR, and that our theory explains the recent phenomenological observation by Baek et al. (PRB70, 134434) that the Larmor-frequency dependence of 1/T11/T_1 data in a large number of AFM rings fits to a single-lorentzian form.Comment: Published as Phys. Rev. Letters 94, 077203 (2005) in slightly reduced for

    Spin dynamics in the single-ion magnet [Er(W5O18)2]9−

    Get PDF
    In this work we present a detailed NMR and \u3bc+SR investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet [Er(W5O18)2]9-. The H1NMR absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of the order of 0.1-0.2 T, which appears to be of dipolar origin. On decreasing the temperature, a gradual loss of the H1NMR signal intensity is observed, a phenomenon known as wipe-out effect. The effect is analyzed quantitatively on the basis of a simple model which relies on the enhancement of the NMR spin-spin, T2-1, relaxation rate due to the slowing down of the magnetic fluctuations. Measurements of spin-lattice relaxation rate T1-1 for H1NMR and of the muon longitudinal relaxation rate \u3bb show an increase as the temperature is lowered. However, while for the NMR case the signal is lost before reaching the very slow fluctuation region, the muon spin-lattice relaxation \u3bb can be followed until very low temperatures and the characteristic maximum, reached when the electronic spin fluctuation frequency becomes of the order of the muon Larmor frequency, can be observed. At high temperatures, the data can be well reproduced with a simple model based on a single correlation time \u3c4=\u3c40exp(\u394/T) for the magnetic fluctuations. However, to fit the relaxation data for both NMR and \u3bc+SR over the whole temperature and magnetic field range, one has to use a more detailed model that takes into account spin-phonon transitions among the Er3+ magnetic sublevels. A good agreement for both proton NMR and \u3bc+SR relaxation is obtained, which confirms the validity of the energy level scheme previously calculated from an effective crystal field Hamiltonian

    In vivo biomedical applications of magnetic resonance and magnetic materials

    No full text
    An overview on the recent progress in the biomedical application of magnetic materials and on the most used magnetic resonance imaging techniques is presented. After briefly mentioning the basic aspects of Magnetic Resonance Imaging (MRI), some of the most frequently used pulse sequences are illustrated with particular emphasis on those used in Diffusion Tensor Imaging, Magnetic Resonance Spectroscopy and functional MRI. Then the basis of the Dynamical Nuclear Polarization technique, which allows to perform in vivo molecular imaging of the metabolic processes, is presented. The physical properties of smart nanosized magnetic materials which can further improve the potential of these diagnostic techniques are described in the following sections. These magnetic nanoparticles may be used as MRI contrast agents, for the magnetic transport and drug delivery or even for the therapy of certain pathologies through magnetic fluid hyperthermia. The possible combination of some of these functionalities into just one multifunctional nanoparticle is also considered

    In vivo biomedical applications of magnetic resonance and magnetic materials

    No full text
    An overview on the recent progress in the biomedical application of magnetic materials and on the most used magnetic resonance imaging techniques is presented. After briefly mentioning the basic aspects of Magnetic Resonance Imaging (MRI), some of the most frequently used pulse sequences are illustrated with particular emphasis on those used in Diffusion Tensor Imaging, Magnetic Resonance Spectroscopy and functional MRI. Then the basis of the Dynamical Nuclear Polarization technique, which allows to perform in vivo molecular imaging of the metabolic processes, is presented. The physical properties of smart nanosized magnetic materials which can further improve the potential of these diagnostic techniques are described in the following sections. These magnetic nanoparticles may be used as MRI contrast agents, for the magnetic transport and drug delivery or even for the therapy of certain pathologies through magnetic fluid hyperthermia. The possible combination of some of these functionalities into just one multifunctional nanoparticle is also considered

    Low-energy spin dynamics in the [YPc2]0 S=1/2 antiferromagnetic chain

    No full text
    1H nuclear magnetic resonance (NMR) measurements in [YPc2]0, an organic compound formed by radicals stacking along chains, are presented. The temperature dependence of the macroscopic susceptibility of the NMR shift and of the spin-lattice relaxation rate 1/T1 indicate that the unpaired electron spins are not delocalized but rather form a S=1/2 antiferromagnetic chain. The exchange couplings estimated from those measurements are all in quantitative agreement. The low-energy spin dynamics can be described in terms of diffusive processes and the temperature dependence of the corresponding diffusion constant suggests that a spin gap at ~1 K might be present in this compound
    corecore