64 research outputs found

    Результаты симультанных операций у пациентов с атеросклеротическим поражением сонных и коронарных артерий

    Get PDF
    СОННЫЕ АРТЕРИИАТЕРОСКЛЕРОЗАРТЕРИОСКЛЕРОЗКОРОНАРНЫХ АРТЕРИЙ СТЕНОЗКАРОТИДНАЯ ЭНДАРТЕРЭКТОМИЯСОННОЙ АРТЕРИИ ЭНДАРТЕРЭКТОМИЯСТЕНОКАРДИЯАОРТОКОРОНАРНОЕ ШУНТИРОВАНИЕКОРОНАРНОЙ АРТЕРИИ ШУНТИРОВАНИ

    Application-infrastructure co-programming: managing the entire complex application lifecycle

    Get PDF
    With an estimated 20 billion connected devices by 2020 generating enormous amounts of data, more data-centric ways of working are needed to cope with the dynamic load and reconfigurability of on-demand computing. There is a growing range of complex, specialised means by which this flexibility can be achieved, e.g. Software-defined networking (SDN). Specification of Quality of Service (QoS) constraints for time-critical characteristics, such as network availability and bandwidth, will be needed, in the same way that compute requirements can be specified in today's infrastructures. This is the motivation for SWITCH -- an EU-funded H2020 project addressing the entire lifecycle of time-critical, self-adaptive cloud applications by developing new middleware and tools for interactive specification of such applications. This paper presents a user-facing perspective on SWITCH by discussing the SWITCH Interactive Development Environment (SIDE) Workbench. SIDE provides a programmable and dynamic graphical modeling environment for cloud applications that ensures efficient use of compute and network resources while satisfying time-critical QoS requirements. SIDE enables a user to specify the software components, properties and requirements, QoS parameters, machine requirements and their composition into a fully operational, multi-tier cloud application. In order to enable SIDE to represent the software and infrastructure constraints and to communicate them to other SWITCH components, we have defined a co-programming model using TOSCA that is capable of representing the application's state during the entire lifecycle of the application. We show how the SIDE Web GUI, along with TOSCA and the other subsystems, can support three use cases and provide a walk-through of one of these use cases to illustrate the power of such an approach

    Application-infrastructure co-programming: managing the entire complex application lifecycle

    Get PDF
    With an estimated 20 billion connected devices by 2020 generating enormous amounts of data, more data-centric ways of working are needed to cope with the dynamic load and reconfigurability of on-demand computing. There is a growing range of complex, specialised means by which this flexibility can be achieved, e.g. Software-defined networking (SDN). Specification of Quality of Service (QoS) constraints for time-critical characteristics, such as network availability and bandwidth, will be needed, in the same way that compute requirements can be specified in today's infrastructures. This is the motivation for SWITCH -- an EU-funded H2020 project addressing the entire lifecycle of time-critical, self-adaptive cloud applications by developing new middleware and tools for interactive specification of such applications. This paper presents a user-facing perspective on SWITCH by discussing the SWITCH Interactive Development Environment (SIDE) Workbench. SIDE provides a programmable and dynamic graphical modeling environment for cloud applications that ensures efficient use of compute and network resources while satisfying time-critical QoS requirements. SIDE enables a user to specify the software components, properties and requirements, QoS parameters, machine requirements and their composition into a fully operational, multi-tier cloud application. In order to enable SIDE to represent the software and infrastructure constraints and to communicate them to other SWITCH components, we have defined a co-programming model using TOSCA that is capable of representing the application's state during the entire lifecycle of the application. We show how the SIDE Web GUI, along with TOSCA and the other subsystems, can support three use cases and provide a walk-through of one of these use cases to illustrate the power of such an approach

    A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus

    Get PDF
    The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies. M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have diversified into many distinct compatibility types that are distinguished by the failure of swarming colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace patterns of incipient genomic divergence, specifically related to social divergence. Although homologous recombination occurs frequently within the two MLST clades, we find an almost complete absence of recombination events between them. As the two clades are very closely related and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid substitution in the core genome. We identify a large genomic tract that consistently differs between isolates that do not freely merge and therefore is a candidate region for harbouring gene(s) responsible for self/non-self discrimination

    Morphology and Photoluminescence of HfO2Obtained by Microwave-Hydrothermal

    Get PDF
    In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission)

    An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy

    Get PDF
    Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites

    An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in giardia lamblia

    Get PDF
    Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes

    Identification and Characterization of a Mef2 Transcriptional Activator in Schistosome Parasites

    Get PDF
    Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences
    corecore