79 research outputs found

    Exact Enumeration and Scaling for Fragmentation of Percolation Clusters

    Get PDF
    The fragmentation properties of percolation clusters yield information about their structure. Monte Carlo simulations and exact cluster enumeration for a square bond lattice and exact calculations for the Bethe lattice are used to study the fragmentation probability as(p) of clusters of mass s at an occupation probability p and the likelihood bs′s(p) that fragmentation of an s cluster will result in a daughter cluster of mass s′. Evidence is presented to support the scaling laws as(pc)∼s and bs′s(pc)=s-φg(s′/s), with φ=2-σ given by the standard cluster-number scaling exponent σ. Simulations for d=2 verify the finite-size-scaling form cs′sL(pc)=s1-φg̃(s′/s,s/Ldf) of the product cs′s(pc)=as(pc)bs′s(pc), where L is the lattice size and df is the fractal dimension. Exact calculations of the fragmentation probability fst of a cluster of mass s and perimeter t indicate that branches are important even on the maximum perimeter clusters. These calculations also show that the minimum of bs′s(p) near s′=s/2, where the two daughter masses are comparable, deepens with increasing p

    Linear theory of unstable growth on rough surfaces

    Full text link
    Unstable homoepitaxy on rough substrates is treated within a linear continuum theory. The time dependence of the surface width W(t)W(t) is governed by three length scales: The characteristic scale l0l_0 of the substrate roughness, the terrace size lDl_D and the Ehrlich-Schwoebel length lESl_{ES}. If lES≪lDl_{ES} \ll l_D (weak step edge barriers) and l0≪lm∼lDlD/lESl_0 \ll l_m \sim l_D \sqrt{l_D/l_{ES}}, then W(t)W(t) displays a minimum at a coverage θmin∼(lD/lES)2\theta_{\rm min} \sim (l_D/l_{ES})^2, where the initial surface width is reduced by a factor l0/lml_0/l_m. The r\^{o}le of deposition and diffusion noise is analyzed. The results are applied to recent experiments on the growth of InAs buffer layers [M.F. Gyure {\em et al.}, Phys. Rev. Lett. {\bf 81}, 4931 (1998)]. The overall features of the observed roughness evolution are captured by the linear theory, but the detailed time dependence shows distinct deviations which suggest a significant influence of nonlinearities

    Nonmonotonic roughness evolution in unstable growth

    Full text link
    The roughness of vapor-deposited thin films can display a nonmonotonic dependence on film thickness, if the smoothening of the small-scale features of the substrate dominates over growth-induced roughening in the early stage of evolution. We present a detailed analysis of this phenomenon in the framework of the continuum theory of unstable homoepitaxy. Using the spherical approximation of phase ordering kinetics, the effect of nonlinearities and noise can be treated explicitly. The substrate roughness is characterized by the dimensionless parameter Q=W0/(k0a2)Q = W_0/(k_0 a^2), where W0W_0 denotes the roughness amplitude, k0k_0 is the small scale cutoff wavenumber of the roughness spectrum, and aa is the lattice constant. Depending on QQ, the diffusion length lDl_D and the Ehrlich-Schwoebel length lESl_{ES}, five regimes are identified in which the position of the roughness minimum is determined by different physical mechanisms. The analytic estimates are compared by numerical simulations of the full nonlinear evolution equation.Comment: 16 pages, 6 figures, to appear on Phys. Rev.

    Novel continuum modeling of crystal surface evolution

    Full text link
    We propose a novel approach to continuum modeling of the dynamics of crystal surfaces. Our model follows the evolution of an ensemble of step configurations, which are consistent with the macroscopic surface profile. Contrary to the usual approach where the continuum limit is achieved when typical surface features consist of many steps, our continuum limit is approached when the number of step configurations of the ensemble is very large. The model can handle singular surface structures such as corners and facets. It has a clear computational advantage over discrete models.Comment: 4 pages, 3 postscript figure

    A Hybrid Monte Carlo Method for Surface Growth Simulations

    Full text link
    We introduce an algorithm for treating growth on surfaces which combines important features of continuum methods (such as the level-set method) and Kinetic Monte Carlo (KMC) simulations. We treat the motion of adatoms in continuum theory, but attach them to islands one atom at a time. The technique is borrowed from the Dielectric Breakdown Model. Our method allows us to give a realistic account of fluctuations in island shape, which is lacking in deterministic continuum treatments and which is an important physical effect. Our method should be most important for problems close to equilibrium where KMC becomes impractically slow.Comment: 4 pages, 5 figure

    Single-Gate Accumulation-Mode InGaAs Quantum Dot with a Vertically Integrated Charge Sensor

    Full text link
    We report on the fabrication and characterization of a few-electron quantum dot controlled by a single gate electrode. Our device has a double-quantum-well design, in which the doping controls the occupancy of the lower well while the upper well remains empty under the free surface. A small air-bridged gate contacts the surface, and is positively biased to draw laterally confined electrons into the upper well. Electrons tunneling between this accumulation-mode dot and the lower well are detected using a quantum point contact (QPC), located slightly offset from the dot gate. The charge state of the dot is measured by monitoring the differential transconductance of the QPC near pinch-off. Addition spectra starting with N=0 were observed as a function of gate voltage. DC sensitivity to single electrons was determined to be as high as 8.6%, resulting in a signal-to-noise ratio of ~9:1 with an equivalent noise bandwidth of 12.1 kHz. Analysis of random telegraph signals associated with the zero to one electron transition allowed a measurement of the lifetimes for the filled and empty states of the one-electron dot: 0.38 ms and 0.22 ms, respectively, for a device with a 10 nm AlInAs tunnel barrier between the two wells.Comment: 3 pages, 3 figure

    Stress-free Spatial Anisotropy in Phase-Ordering

    Full text link
    We find spatial anisotropy in the asymptotic correlations of two-dimensional Ising models under non-equilibrium phase-ordering. Anisotropy is seen for critical and off-critical quenches and both conserved and non-conserved dynamics. We argue that spatial anisotropy is generic for scalar systems (including Potts models) with an anisotropic surface tension. Correlation functions will not be universal in these systems since anisotropy will depend on, e.g., temperature, microscopic interactions and dynamics, disorder, and frustration.Comment: 4 pages, 4 figures include
    • …
    corecore