425 research outputs found

    Tuning the electronic transport properties of graphene through functionalisation with fluorine

    Get PDF
    Engineering the electronic properties of graphene has triggered great interest for potential applications in electronics and opto-electronics. Here we demonstrate the possibility to tune the electronic transport properties of graphene monolayers and multilayers by functionalisation with fluorine. We show that by adjusting the fluorine content different electronic transport regimes can be accessed. For monolayer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping in two dimensions to Efros - Shklovskii variable range hopping. Multilayer fluorinated graphene with high concentration of fluorine show two-dimensional Mott variable range hopping transport, whereas CF0.28 multilayer flakes have a band gap of 0.25eV and exhibit thermally activated transport. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.Comment: 6 pages, 5 figure

    Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped Metal-Phthalocyanine compounds

    Full text link
    We have performed a comparative study of the electronic properties of six different electron-doped metal phthalocyanine (MPc) compounds (ZnPc, CuPc, NiPc, CoPc, FePc, and MnPc), in which the electron density is controlled by means of potassium intercalation. In spite of the complexity of these systems, we find that the nature of the underlying molecular orbitals produce observable effects in the doping dependence of the electrical conductivity of the materials. For all the MPc's in which the added electrons are expected to occupy orbitals centered on the ligands (ZnPc, CuPc, and NiPc), the doping dependence of the conductivity has an essentially identical shape. This shape is different from that observed in MPc materials in which electrons are also added to orbitals centered on the metal atom (CoPc, FePc, and MnPc). The observed relation between the macroscopic electronic properties of the MPc compounds and the properties of the molecular orbitals of the constituent molecules, clearly indicates the richness of the alkali-doped metal-phthalocyanines as a model class of compounds for the investigation of the electronic properties of molecular systems

    Double-gated graphene-based devices

    Full text link
    We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric field, a unique property of few layer graphene systems. Here we discuss technological details that are important for the fabrication of top gated structures, based on electron-gun evaporation of SiO2_2. We perform a statistical study that demonstrates how --contrary to expectations-- the breakdown field of electron-gun evaporated thin SiO2_2 films is comparable to that of thermally grown oxide layers. We find that a high breakdown field can be achieved in evaporated SiO2_2 only if the oxide deposition is directly followed by the metallization of the top electrodes, without exposure to air of the SiO2_2 layer.Comment: Replaced with revised version. To appear on New Journal of Physic

    Direct observation of a gate tunable band-gap in electrical transport in ABC-trilayer graphene

    Full text link
    Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectroscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the non-linearities in current \textit{versus} voltage characteristics and the temperature dependence of the conductivity we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent 3/23/2. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable THz light sources and detectors.Comment: Nano Letters, 2015 just accepted, DOI: 10.1021/acs.nanolett.5b0077

    Electronic transport properties of few-layer graphene materials

    Get PDF
    Since the discovery of graphene -a single layer of carbon atoms arranged in a honeycomb lattice - it was clear that this truly is a unique material system with an unprecedented combination of physical properties. Graphene is the thinnest membrane present in nature -just one atom thick- it is the strongest material, it is transparent and it is a very good conductor with room temperature charge mobilities larger than the typical mobilities found in silicon. The significance played by this new material system is even more apparent when considering that graphene is the thinnest member of a larger family: the few-layer graphene materials. Even though several physical properties are shared between graphene and its few-layers, recent theoretical and experimental advances demonstrate that each specific thickness of few-layer graphene is a material with unique physical properties.Comment: 26 pages, 8 figure

    Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements

    Full text link
    The complex elastic compliance and dielectric susceptibility of (Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the composition range between pure NBT and the morphotropic phase boundary included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the determination of the tetragonal region of the phase diagram, up to now impossible due to the strong lattice disorder and small distortions and polarizations involved. In spite of ample evidence of disorder and structural heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C transition merges into the diffuse and relaxor-like transition associated with broad maxima of the dielectric and elastic susceptibilities. An attempt is made at relating the different features in the anelastic and dielectric curves to different modes of octahedral rotations and polar cation shifts. The possibility is also considered that the cation displacements locally have monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Shot Noise in Ballistic Graphene

    Get PDF
    We have investigated shot noise in graphene field effect devices in the temperature range of 4.2--30 K at low frequency (ff = 600--850 MHz). We find that for our graphene samples with large width over length ratio W/LW/L, the Fano factor F\mathfrak{F} reaches a maximum F\mathfrak{F} \sim 1/3 at the Dirac point and that it decreases strongly with increasing charge density. For smaller W/LW/L, the Fano factor at Dirac point is significantly lower. Our results are in good agreement with the theory describing that transport at the Dirac point in clean graphene arises from evanescent electronic states.Comment: Phys. Rev. Lett. 100, 196802 (2008
    corecore