7,402 research outputs found
Future utilization of space: Silverton Conference on material science and phase transformations in zero-gravity, summary of proceeding
The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest
Silverton Conference on Applications of the Zero Gravity Space Shuttle Environment to Problems in Fluid Dynamics
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas
The complementarity of astrometric and radial velocity exoplanet observations - Determining exoplanet mass with astrometric snapshots
We obtain full information on the orbital parameters by combining radial
velocity and astrometric measurements by means of Bayesian inference. We sample
the parameter probability densities of orbital model parameters with a Markov
chain Monte Carlo (McMC) method in simulated observational scenarios to test
the detectability of planets with orbital periods longer than the observational
timelines. We show that, when fitting model parameters simultaneously to
measurements from both sources, it is possible to extract much more information
from the measurements than when using either source alone. We demonstrate this
by studying the orbit of recently found extra-solar planet HD 154345 b.Comment: 6 pages, 9 figures. Accepted to A&
Constraining the Sub-AU-Scale Distribution of Hydrogen and Carbon Monoxide Gas around Young Stars with the Keck Interferometer
We present Keck Interferometer observations of T Tauri and Herbig Ae/Be stars
with a spatial resolution of a few milliarcseconds and a spectral resolution of
~2000. Our observations span the K-band, and include the Br gamma transition of
Hydrogen and the v=2-0 and v=3-1 transitions of carbon monoxide. For several
targets we also present data from Keck/NIRSPEC that provide higher spectral
resolution, but a seeing-limited spatial resolution, of the same spectral
features. We analyze the Br gamma emission in the context of both disk and
infall/outflow models, and conclude that the Br gamma emission traces gas at
very small stellocentric radii, consistent with the magnetospheric scale.
However some Br gamma-emitting gas also seems to be located at radii of >0.1
AU, perhaps tracing the inner regions of magnetically launched outflows. CO
emission is detected from several objects, and we generate disk models that
reproduce both the KI and NIRSPEC data well. We infer the CO spatial
distribution to be coincident with the distribution of continuum emission in
most cases. Furthermore the Br gamma emission in these objects is roughly
coincident with both the CO and continuum emission. We present potential
explanations for the spatial coincidence of continuum, Br gamma, and CO
overtone emission, and explore the implications for the low occurrence rate of
CO overtone emission in young stars. Finally, we provide additional discussion
of V1685 Cyg, which is unusual among our sample in showing large differences in
emitting region size and spatial position as a function of wavelength.Comment: Accepted for publication in MNRA
Giant capacitance of a plane capacitor with a two-dimensional electron gas in a magnetic field
If a clean two-dimensional electron gas (2DEG) with small concentration
comprises one (or both) electrodes of a plane capacitor, the resulting
capacitance can be larger than the "geometric capacitance" determined
by the physical separation between electrodes. A recent paper [1] argued
that when the effective Bohr radius of the 2DEG satisfies , one
can achieve at low concentration . Here we show that even
for devices with , including graphene, for which is effectively
infinite, one also arrives at at low electron concentration if there
is a strong perpendicular magnetic field.Comment: 6 pages, 5 figures; updated discussion about bilayer systems; added
discussion of fractional quantum Hall state
A study of the operation of selected national research facilities
The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated
- …