44,758 research outputs found

    Well-Ordered Philosophy? Reflections on Kitcher's Proposal for a Renewal of Philosophy.

    Get PDF
    In his recent article Philosophy Inside Out, Philip Kitcher presents a metaphilosophical outlook that aims at nothing less than a renewal of philosophy. His idea is to draw philosophers’ attention away from “timeless questions” in the so-called “core areas” of philosophy. Instead, philosophers should address questions that matter to human lives. The aim of this paper is twofold: first, to reconstruct Kitcher’s view of how philosophy should be renewed; second, to point out some difficulties relating to his position. These difficulties concern the integration of his naturalism into the pragmatic vision of philosophy, the role of putative philosophical experts, and the ideal status of the program of well-ordered inquiry

    Investigation of beauty production and parton shower effects at LHC

    Get PDF
    We present hadron-level predictions from the Monte Carlo generator Cascade and parton level calculations of open b quark, b-flavored hadron and inclusive b-jet production in the framework of the kt-factorization QCD approach for the LHC energies. The unintegrated gluon densities in a proton are determined using the CCFM evolution equation and the Kimber-Martin-Ryskin (KMR) prescription. Our predictions are compared with the first data taken by the CMS and LHCb collaborations at 7 TeV. We study the theoretical uncertainties of our calculations and investigate the effects coming from parton showers in initial and final states. The special role of initial gluon transverse momenta in description of the data is pointed out.Comment: 19 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1105.507

    Mixed-State Entanglement and Quantum Teleportation through Noisy Channels

    Full text link
    The quantum teleportation with noisy EPR state is discussed. Using an optimal decomposition technique, we compute the concurrence, entanglement of formation and Groverian measure for various noisy EPR resources. It is shown analytically that all entanglement measures reduce to zero when Fˉ2/3\bar{F} \leq 2/3, where Fˉ\bar{F} is an average fidelity between Alice and Bob. This fact indicates that the entanglement is a genuine physical resource for the teleportation process. This fact gives valuable clues on the optimal decomposition for higher-qubit mixed states. As an example, the optimal decompositions for the three-qubit mixed states are discussed by adopting a teleportation with W-stateComment: 18 pages, 4 figure

    NRG for the bosonic single-impurity Anderson model: Dynamics

    Full text link
    The bosonic single-impurity Anderson model (B-SIAM) is studied to understand the local dynamics of an atomic quantum dot (AQD) coupled to a Bose-Einstein condensation (BEC) state, which can be implemented to probe the entanglement and the decoherence of a macroscopic condensate. Our recent approach of the numerical renormalization group (NRG) calculation for the B-SIAM revealed a zero-temperature phase diagram, where a Mott phase with local depletion of normal particles is separated from a BEC phase with enhanced density of the condensate. As an extension of the previous work, we present the calculations of the local dynamical quantities of the B-SIAM which reinforce our understanding of the physics in the Mott and the BEC phases.Comment: 12 pages, 13 figure

    Tripartite Entanglement in Noninertial Frame

    Full text link
    The tripartite entanglement is examined when one of the three parties moves with a uniform acceleration with respect to other parties. As Unruh effect indicates, the tripartite entanglement exhibits a decreasing behavior with increasing the acceleration. Unlike the bipartite entanglement, however, the tripartite entanglement does not completely vanish in the infinite acceleration limit. If the three parties, for example, share the Greenberger-Horne-Zeilinger or W-state initially, the corresponding π\pi-tangle, one of the measures for tripartite entanglement, is shown to be π/60.524\pi/6 \sim 0.524 or 0.176 in this limit, respectively. This fact indicates that the tripartite quantum information processing may be possible even if one of the parties approaches to the Rindler horizon. The physical implications of this striking result are discussed in the context of black hole physics.Comment: 19 pages, 5 figure

    Ionic and Electronic Conductivity of Nanostructured, Samaria-Doped Ceria

    Get PDF
    The ionic and electronic conductivities of samaria doped ceria electrolytes, Ce_(0.85)Sm_(0.15)O_(1.925−δ), with nanometric grain size have been evaluated. Nanostructured bulk specimens were obtained using a combination of high specific-surface-area starting materials and suitable sintering profiles under conventional, pressureless conditions. Bulk specimens with relatively high density (≥92% of theoretical density) and low medium grain size (as small as 33 nm) were achieved. Electrical A.C. impedance spectra were recorded over wide temperature (150 to 650°C) and oxygen partial pressure ranges (0.21 to 10^(−31) atm). Under all measurement conditions the total conductivity decreased monotonically with decreasing grain size. In both the electrolytic and mixed conducting regimes this behavior is attributed to the high number density of high resistance grain boundaries. The results suggest a possible variation in effective grain boundary width with grain size, as well as a possible variation in specific grain boundary resistance with decreasing oxygen partial pressure. No evidence appears for either enhanced reducibility or enhanced electronic conductivity upon nanostructuring

    Dynamical Exchanges in Facilitated Models of Supercooled liquids

    Full text link
    We investigate statistics of dynamical exchange events in coarse--grained models of supercooled liquids in spatial dimensions d=1d=1, 2, and 3. The models, based upon the concept of dynamical facilitation, capture generic features of statistics of exchange times and persistence times. Here, distributions for both times are related, and calculated for cases of strong and fragile glass formers over a range of temperatures. Exchange time distributions are shown to be particularly sensitive to the model parameters and dimensions, and exhibit more structured and richer behavior than persistence time distributions. Mean exchange times are shown to be Arrhenius, regardless of models and spatial dimensions. Specifically, c2 \sim c^{-2}, with cc being the excitation concentration. Different dynamical exchange processes are identified and characterized from the underlying trajectories. We discuss experimental possibilities to test some of our theoretical findings.Comment: 11 pages, 14 figures, minor corrections made, paper published in Journal of Chemical Physic

    Spinor Dynamics in an Antiferromagnetic Spin-1 Condensate

    Full text link
    We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths af=2af=0a_{f=2}-a_{f=0} is 2.47±0.272.47\pm0.27 Bohr radii.Comment: 5 pages, 2 figures. Changes: added reference, minor correction
    corecore