7,611 research outputs found
Determination of |V_us| from hadronic tau decays
The recent update of the strange spectral function and the moments of the
invariant mass distribution by the OPAL collaboration from hadronic tau decay
data are employed to determine |V_us| as well as m_s. Our result,
|V_us|=0.2208\pm0.0034, is competitive to the standard extraction of |V_us|
from K_e3 decays and to the new proposals to determine it. Furthermore, the
error associated to our determination of |V_us| can be reduced in the future
since it is dominated by the experimental uncertainty that will be eventually
much improved by the B-factories hadronic tau data. Another improvement that
can be performed is the simultaneous fit of both |V_us| and m_s to a set of
moments of the hadronic tau decays invariant mass distribution, which will
provide even a more accurate determination of both parameters.Comment: 6 pages. Invited talk given by E.G. at the XXXXth Rencontres de
Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy,
5-12 Mar 200
Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator
We study theoretically the dynamics of a hybrid optomechanical system consisting of a macroscopic mechanical membrane magnetically coupled to a spinor Bose-Einstein condensate via a nanomagnet attached at the membrane center. We demonstrate that this coupling permits us to monitor indirectly the center-of-mass position of the membrane via measurements of the spin of the condensed atoms. These measurements normally induce a significant backaction on the membrane motion, which we quantify for the cases of thermal and coherent initial states of the membrane. We discuss the possibility of measuring this quantum backaction via repeated measurements. We also investigate the potential to generate nonclassical states of the membrane, in particular Schrödinger-cat states, via such repeated measurements
Stochastic heating of a molecular nanomagnet
We study the excitation dynamics of a single molecular nanomagnet by static
and pulsed magnetic fields. Based on a stability analysis of the classical
magnetization dynamics we identify analytically the fields parameters for which
the energy is stochastically pumped into the system in which case the
magnetization undergoes diffusively and irreversibly a large angle deflection.
An approximate analytical expression for the diffusion constant in terms of the
fields parameters is given and assessed by full numerical calculations.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
Crossover from diffusive to non-diffusive dynamics in the two-dimensional electron gas with Rashba spin-orbit coupling
We present the calculation of the density matrix response function of the
two-dimensional electron gas with Rashba spin-orbit interaction, which is
applicable in a wide range of parameters covering the diffusive and
non-diffusive, the dirty and the clean limits. A description of the crossover
between the different regimes is thus provided as well. On the basis of the
derived microscopic expressions we study the propagating charge and
spin-polarization modes in the clean, non-diffusive regime, which is accessible
in the modern experiments.Comment: 8 pages, 6 figures, a considerable extension of the first versio
Quantum measurement backaction from a BEC coupled to a mechanical oscillator
We study theoretically the dynamics of a a hybrid optomechanical system
consisting of a macroscopic mechanical membrane magnetically coupled to a
spinor Bose-Einstein condensate via a nanomagnet attached at the membrane
center. We demonstrate that this coupling permits us to monitor indirectly the
center-of-mass position of the membrane via measurements of the spin of the
condensed atoms. These measurements normally induce a significant backaction on
the membrane motion, which we quantify for the cases of thermal and coherent
initial states of the membrane. We discuss the possibility of measuring that
quantum backaction via repeated measurements. We also investigate the potential
to generate non-classical states of the membrane, in particular Schrodinger cat
states, via such repeated measurements.Comment: 14 pages, 4 figures. Submitted to PR
Nogo-a regulates neural precursor migration in the embryonic mouse cortex
Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain-derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical developmen
Statistical mechanics of transcription-factor binding site discovery using Hidden Markov Models
Hidden Markov Models (HMMs) are a commonly used tool for inference of
transcription factor (TF) binding sites from DNA sequence data. We exploit the
mathematical equivalence between HMMs for TF binding and the "inverse"
statistical mechanics of hard rods in a one-dimensional disordered potential to
investigate learning in HMMs. We derive analytic expressions for the Fisher
information, a commonly employed measure of confidence in learned parameters,
in the biologically relevant limit where the density of binding sites is low.
We then use techniques from statistical mechanics to derive a scaling principle
relating the specificity (binding energy) of a TF to the minimum amount of
training data necessary to learn it.Comment: 25 pages, 2 figures, 1 table V2 - typos fixed and new references
adde
Dissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz
Tailored quantum dots for entangled photon pair creation
We compare the asymmetry-induced exchange splitting delta_1 of the
bright-exciton ground-state doublet in self-assembled (In,Ga)As/GaAs quantum
dots, determined by Faraday rotation, with its homogeneous linewidth gamma,
obtained from the radiative decay in time-resolved photoluminescence.
Post-growth thermal annealing of the dot structures leads to a considerable
increase of the homogeneous linewidth, while a strong reduction of the exchange
splitting is simultaneously observed. The annealing can be tailored such that
delta_1 and gamma become comparable, whereupon the carriers are still well
confined. This opens the possibility to observe polarization entangled photon
pairs through the biexciton decay cascade.Comment: 4 pages, 4 figure
- …