22 research outputs found

    Enriched finite elements for initial-value problem of transverse electromagnetic waves in time domain

    Get PDF
    This paper proposes a partition of unity enrichment scheme for the solution of the electromagnetic wave equation in the time domain. A discretization scheme in time is implemented to render implicit solutions of systems of equations possible. The scheme allows for calculation of the field values at different time steps in an iterative fashion. The spatial grid is partitioned into a finite number of elements with intrinsic shape functions to form the bases of solution. Furthermore, each finite element degree of freedom is expanded into a sum of a slowly varying term and a combination of highly oscillatory functions. The combination consists of plane waves propagating in multiple directions, with a fixed frequency. This significantly reduces the number of degrees of freedom required to discretize the unknown field, without compromising on the accuracy or allowed tolerance in the errors, as compared to that of other enriched FEM approaches. Also, this considerably reduces the computational costs in terms of memory and processing time. Parametric studies, presented herein, confirm the robustness and efficiency of the proposed method and the advantages compared to another enrichment method

    Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection

    Get PDF
    peer-reviewedBackground A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. Results We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. Conclusions We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.This research was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No. 641984, through funding of the List_MAPS consortium. We also acknowledge funding and support from Science Foundation Ireland (SFI) in the form of a center grant (APC Microbiome Ireland grant SFI/12/RC/2273)

    Mobile Learning Applications for Refugees: A Systematic Literature Review

    No full text
    The proliferation of mobile devices in everyday life since the end of the 20th century has led to mobile applications for educational purposes and the creation of the research field of mobile learning. Despite the extended research interest on the effectiveness of this field, there is limited research on mobile learning for various social groups, such as refugees, students with learning difficulties and disabilities. Due to the unprecedented number (over one hundred million) of refugees during the second decade of the 21st century worldwide, many NGOs (Non-Governmental Organizations) and UN (United Nations) initiatives have proposed leveraging mobile learning for refugee educational needs. This research article focuses on mobile learning for refugee education. Namely, the present systematic literature review results from 2015 to 2020 will give a concrete picture of the recently existing mobile learning apps for refugees and their characteristics. According to the research findings, 15 characteristics were collected out of 14 applications. According to prior literature, areas of agreement or discrepancies in the field were found. Two new-to previous literature-characteristics were revealed: interwoven psychological and educational features and refugees’ cultural features in the apps. The summarization and categorization of the app’s characteristics aim to contribute to mobile learning research and impact game developers, educators, and NGOs according to refugee needs. The limitations of this study and issues for further exploration will also be discussed in the last sections. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems

    Get PDF
    We present a partition of unity finite element method for wave propagation problems in the time domain using an explicit time integration scheme. Plane wave enrichment functions are introduced at the finite elements nodes which allows for a coarse mesh at low order polynomial shape functions even at high wavenumbers. The initial condition is formulated as a Galerkin approximation in the enriched function space. We also show the possibility of lumping the mass matrix which is approximated as a block diagonal system. The proposed method, with and without lumping, is validated using three test cases and compared to an implicit time integration approach. The stability of the proposed approach against different factors such as the choice of wavenumber for the enrichment functions, the spatial discretization, the distortions in mesh elements or the timestep size, is tested in the numerical studies. The method performance is measured for the solution accuracy and the CPU processing times. The results show significant advantages for the proposed lumping approach which outperforms other considered approaches in terms of stability. Furthermore, the resulting block diagonal system only requires a fraction of the CPU time needed to solve the full system associated with the non-lumped approaches
    corecore