272 research outputs found
Hamilton-Jacobi Method and Gravitation
Studying the behaviour of a quantum field in a classical, curved, spacetime
is an extraordinary task which nobody is able to take on at present time.
Independently by the fact that such problem is not likely to be solved soon,
still we possess the instruments to perform exact predictions in special,
highly symmetric, conditions. Aim of the present contribution is to show how it
is possible to extract quantitative information about a variety of physical
phenomena in very general situations by virtue of the so-called Hamilton-Jacobi
method. In particular, we shall prove the agreement of such semi-classical
method with exact results of quantum field theoretic calculations.Comment: To appear in the proceedings of "Cosmology, the Quantum Vacuum, and
Zeta Functions": A workshop with a celebration of Emilio Elizalde's Sixtieth
birthday, Bellaterra, Barcelona, Spain, 8-10 Mar 201
Evolved stars in the Local Group galaxies. I. AGB evolution and dust production in IC 1613
We used models of thermally-pulsing asymptotic giant branch (AGB) stars, that
also describe the dust-formation process in the wind, to interpret the
combination of near- and mid-infrared photometric data of the dwarf galaxy IC
1613. This is the first time that this approach is extended to an environment
different from the Milky Way and the Magellanic Clouds (MCs). Our analysis,
based on synthetic population techniques, shows a nice agreement between the
observations and the expected distribution of stars in the colour-magnitude
diagrams obtained with JHK and Spitzer bands. This allows a characterization of
the individual stars in the AGB sample in terms of mass, chemical composition,
and formation epoch of the progenitors. We identify the stars exhibiting the
largest degree of obscuration as carbon stars evolving through the final AGB
phases, descending from 1-1.25Msun objects of metallicity Z=0.001 and from
1.5-2.5Msun stars with Z=0.002. Oxygen-rich stars constitute the majority of
the sample (65%), mainly low mass stars (<2Msun) that produce a negligible
amount of dust (<10^{-7}Msun/yr). We predict the overall dust-production rate
from IC 1613, mostly determined by carbon stars, to be 6x10^{-7}Msun/yr with an
uncertainty of 30%. The capability of the current generation of models to
interpret the AGB population in an environment different from the MCs opens the
possibility to extend this kind of analysis to other Local Group galaxies.Comment: 14 pages, 6 figures, accepted for publication on MNRA
On tunneling across horizons
The tunneling method for stationary black holes in the Hamilton-Jacobi
variant is reconsidered in the light of various critiques that have been moved
against. It is shown that once the tunneling trajectories have been correctly
identified the method isfree from internal inconsistencies, it is manifestly
covariant, it allows for the extension to spinning particles and it can even be
used without solving the Hamilton-Jacobi equation. These conclusions borrow
support on a simple analytic continuation of the classical action of a
pointlike particle, made possible by the unique assumption that it should be
analytic in complexified Schwarzschild or Kerr-Newman spacetimes. A more
general version of the Parikh-Wilczek method will also be proposed along these
lines.Comment: Latex Document, 5 pages, 2 figures, title changed, abstract changed,
added references, results unchange
Planetary Nebulae in the Small Magellanic Cloud
We analyse the planetary nebulae (PNe) population of the Small Magellanic
Cloud (SMC), based on evolutionary models of stars with metallicities in the
range and mass , evolved through the asymptotic giant branch (AGB) phase. The models
used account for dust formation in the circumstellar envelope. To characterise
the PNe sample of the SMC, we compare the observed abundances of the various
species with the final chemical composition of the AGB models: this study
allows us to identify the progenitors of the PNe observed, in terms of mass and
chemical composition. According to our interpretation, most of the PNe descend
from low-mass () stars, which become carbon rich, after
experiencing repeated third dredge-up episodes, during the AGB phase. A
fraction of the PNe showing the signature of advanced CNO processing are
interpreted as the progeny of massive AGB stars, with mass above , undergoing strong hot bottom burning. The differences with the
chemical composition of the PNe population of the Large Magellanic Cloud (LMC)
is explained on the basis of the diverse star formation history and
age-metallicity relation of the two galaxies. The implications of the present
study for some still highly debated points regarding the AGB evolution are also
commented.Comment: Accepted for publication in MNRAS, 11 pages, 4 figure
A test for asymptotic giant branch evolution theories: Planetary Nebulae in the Large Magellanic Cloud
We used a new generation of asymptotic giant branch (AGB) stellar models that
include dust formation in the stellar winds to find the links between
evolutionary models and the observed properties of a homogeneous sample of
Large Magellanic Cloud (LMC) planetary nebulae (PNe). Comparison between the
evolutionary yields of elements such as CNO and the corresponding observed
chemical abundances is a powerful tool to shed light on evolutionary processes
such as hot bottom burning (HBB) and third dredge-up (TDU). We found that the
occurrence of HBB is needed to interpret the nitrogen-enriched (log(N/H)+12>8)
PNe. In particular, N-rich PNe with the lowest carbon content are nicely
reproduced by AGB models of mass M >=6 Mo, whose surface chemistry reflects the
pure effects of HBB. PNe with log(N/H)+12<7.5 correspond to ejecta of stars
that have not experienced HBB, with initial mass below about 3 Mo. Some of
these stars show very large carbon abundances, owing to the many TDU episodes
experienced. We found from our LMC PN sample that there is a threshold to the
amount of carbon accumulated at AGB surfaces, log(C/H)+12<9. Confirmation of
this constraint would indicate that, after the C-star stage is reached,AGBs
experience only a few thermal pulses, which suggests a rapid loss of the
external mantle, probably owing to the effects of radiation pressure on
carbonaceous dust particles present in the circumstellar envelope. The
implications of these findings for AGB evolution theories and the need to
extend the PN sample currently available are discussed.Comment: 12 pages, 4 figures, 1 table, accepted for publication in MNRAS (2015
July 13; in original form 2015 June 9
The extended Main Sequence Turn Off cluster NGC1856: rotational evolution in a coeval stellar ensemble
Multiple or extended turnoffs in young clusters in the Magellanic Clouds have
recently received large attention. A number of studies have shown that they may
be interpreted as the result of a significant age spread (several 10^8yr in
clusters aged 1--2 Gyr), while others attribute them to a spread in stellar
rotation. We focus on the cluster NGC 1856, showing a splitting in the upper
part of the main sequence, well visible in the color m_{F336W}-m_{F555W}$, and
a very wide turnoff region. Using population synthesis available from the
Geneva stellar models, we show that the cluster data can be interpreted as
superposition of two main populations having the same age (~350Myr), composed
for 2/3 of very rapidly rotating stars, defining the upper turnoff region and
the redder main sequence, and for 1/3 of slowly/non-rotating stars. Since rapid
rotation is a common property of the B-A type stars, the main question raised
by this model concerns the origin of the slowly/non-rotating component. Binary
synchronization is a possible process behind the slowly/non-rotating
population; in this case, many slowly/non-rotating stars should still be part
of binary systems with orbital periods in the range from 4 to 500 days. Such
periods imply that Roche lobe overflow occurs, during the evolution of the
primary off the main sequence, so most primaries may not be able to ignite core
helium burning, consistently why the lack of a red clump progeny of the slowly
rotating population.Comment: 8 pages 4 figures, accepted for publication on Monthly Notices of the
R.A.
The helium spread in the Globular cluster 47 Tuc
Spectroscopy has shown the presence of the CN band dicothomy and the Na-O
anticorrelations for 50--70% of the investigated samples in the cluster 47 Tuc,
otherwise considered a "normal" prototype of high metallicity clusters from the
photometric analysis. Very recently, the re-analysis of a large number of
archival HST data of the cluster core has been able to put into evidence the
presence of structures in the Sub Giant Branch: it has a brighter component
with a spread in magnitude by 0.06 mag and a second one, made of about
10% of stars, a little fainter (by 0.05 mag). These data also show that
the Main Sequence of the cluster has an intrinsic spread in color which, if
interpreted as due to a small spread in helium abundance, suggests
Y0.027. In this work we examine in detail whether the Horizontal
Branch morphology and the Sub Giant structure provide further independent
indications that a real --although very small-helium spread is present in the
cluster. We re--analyze the HST archival data for the Horizontal Branch of 47
Tuc, obtaining a sample of 500 stars with very small photometric errors,
and build population synthesis based on new models to show that its particular
morphology can be better explained by taking into account a spread in helium
abundance of 2% in mass. The same variation in helium is able to explain the
spread in luminosity of the Sub Giant Branch, while a small part of the second
generation is characterized by a small C+N+O increase and provides an
explanation for the fainter Sub Giant Branch. We conclude that three
photometric features concur to form the paradigm that a small but real helium
spread is present in a cluster that has no spectacular evidence for multiple
populations like those shown by other massive clusters.Comment: Accepted for publication in the MNRAS on 2010 June 8. Received 2010
May 19; in original form 2010 February 9. 7 pages and 3 figures. No table
- …
