190 research outputs found

    EEGs as potential predictors of virtual agents' acceptance

    Get PDF
    Over the last decade, much effort has been made to develop robots and virtual agents acting as assistants of elderly people in order to support them in their daily activities. In this context users' acceptance of such virtual assistants is fundamental for engaging them in order to maximize the assistance's effectiveness and users' comfort. Therefore, improving assessment techniques for elders' acceptance of virtual agents is necessary for understanding the impressions they arouse and determining their design accordingly. This paper is a proposition to introduce an EEG emotion detection procedure to gain further insight in implementing effective virtual agents' acceptance

    Hydrothermal depolymerization of biorefinery lignin-rich streams: Influence of reaction conditions and catalytic additives on the organic monomers yields in biocrude and aqueous phase

    Get PDF
    Hydrothermal depolymerization of lignin-rich streams (LRS) from lignocellulosic ethanol was successfully carried out in a lab-scale batch reactors unit. A partial depolymerization into oligomers and monomers was achieved using subcritical water as reaction medium. The influence of temperature (300–350–370 °C) and time (5–10 minutes) was investigated to identify the optimal condition on the monomers yields in the lighter biocrude (BC1) and aqueous phase (AP) fractions, focusing on specific phenolic classes as well as carboxylic acids and alcohols. The effect of base catalyzed reactions (2–4 wt. % of KOH) was compared to the control tests as well as to acid-catalyzed reactions obtained with a biphasic medium of supercritical carbon dioxide (sCO2) and subcritical water. KOH addition resulted in enhanced overall depolymerization without showing a strong influence on the phenolic generation, whereas sCO2 demonstrated higher phenolic selectivity even though no effect was observed on the overall products mass yields. In conclusion, a comparison between two different biocrude collection procedures was carried out in order to understand how the selected chemical extraction mode influences the distribution of compounds between BC1 and AP

    Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in the maintenance of heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription. Although many reports describe the active role of U-STAT3 in oncogenesis in addition to phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we identify the presence of two intermolecular disulfide bridges between Cys367 and Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and in vivo The presence of these disulfides is here demonstrated to largely contribute to the structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon reduction in the S-S bonds. In particular, the Cys367-Cys542 disulfide bridge is shown to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues completely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations confirm that the noncovalent interactions are sufficient for proper folding and dimer formation, but that the interchain disulfide bonds are crucial to preserve the functional dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first common step followed by stabilization through the formation of interchain disulfide bond

    Modeling the Time Evolution of the Nanoparticle-Protein Corona in a Body Fluid

    Get PDF
    Background: Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona. Results: We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL) and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL. Conclusions: The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine

    Effects of pet exposure in the first year of life on respiratory and allergic symptoms in 7-yr-old children. The SIDRIA-2 study

    Get PDF
    The effects of pet exposure on the development of respiratory symptoms have recently been the matter of vivid discussion. Our objective was to determine the effects of exposure to cat or dog in the first year of life on subsequent respiratory/allergic symptoms in children in a large Italian multicentre study. As part of the SIDRIA-2 Study (Studi Italiani sui Disturbi Respiratori dell'Infanzia e l'Ambiente 2002), the parents of 20016 children (median age 7 yr) provided information on indoor exposures at different times in life and respiratory/allergic symptoms through questionnaires. Logistic regression analyses were performed taking into account cat or dog exposure at different times in life and adjusting for the presence of the other pet, mould exposure, gender, age, parental education, maternal smoking during the first year of life, current passive smoking, family history of asthma/rhinitis/eczema and other potential confounders. Neither significant effects of dog exposure in the first year of life nor in other periods were found on respiratory/allergic symptoms after adjusting for the other covariates. Cat exposure in the first year of life was significantly and independently associated with current wheezing [OR (95% CI) 1.88 (1.33-2.68), p < 0.001] and current asthma [1.74 (1.10-2.78), p < 0.05] and border-line associated with current rhinoconjunctivitis [1.43 (0.97-2.11), p = 0.07]. No other effects of cat exposure were found on respiratory/allergic symptoms. Cat, but not dog, exposure in the first year of life is an independent risk factor for current wheezing, current asthma and current rhinoconjunctivitis at the age of 7

    Alterations to nuclear architecture and genome behavior in senescent cells.

    Get PDF
    The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres

    Profile, Healthcare Resource Consumption and Related Costs in ANCA-Associated Vasculitis Patients: A Real-World Analysis in Italy

    Get PDF
    Introduction: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are rare autoimmune diseases triggering inflammation of small vessels. This real-world analysis was focused on the most common AAV forms, granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA), to describe patients’ demographic and clinical characteristics, therapeutic management, disease progression, and the related economic burden. Methods: A retrospective analysis was conducted on administrative databases of a representative sample of Italian healthcare entities, covering approximately 12 million residents. Between January 2010 and December 2020, adult GPA patients were identified by payment waiver code or hospitalization discharge diagnosis, and MPA patients by payment waiver code with or without hospitalization discharge diagnosis. Clinical outcomes were evaluated through AAV-related hospitalizations, renal failure onset, and mortality. Economic analysis included healthcare resource utilization deriving from drugs, hospitalizations, and outpatient specialist services. The related mean direct costs year/patient were also calculated in patients stratified by presence/absence of glucocorticoid therapy and type of inclusion criterion (hospitalization/payment waiver code). Results: Overall, 859 AAV patients were divided into GPA (n = 713; 83%) and MPA (n = 146; 17%) cohorts. Outcome indicators highlighted a clinically worse phenotype associated with GPA compared to MPA. Cost analysis during follow-up showed tendentially increased expenditures in glucocorticoid-treated patients versus untreated (overall AAV: €8728 vs. €7911; GPA: €9292 vs. €9143; MPA: €5967 vs. €2390), mainly driven by drugs (AAV: €2404 vs. €874; GPA: €2510 vs. €878; MPA: €1881 vs. €854) and hospitalizations. Conclusion: Among AAV forms, GPA resulted in a worse clinical picture, higher mortality, and increased costs. This is the first real-world pharmaco-economic analysis on AAV patients stratified by glucocorticoid use on disease management expenditures. In both GPA and MPA patients, glucocorticoid treatment resulted in higher healthcare costs, mostly attributable to medications, and then hospitalizations, confirming the clinical complexity and economic burden for management of patients with autoimmune diseases under chronic immunosuppression

    Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability

    Get PDF
    A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability
    • …
    corecore