2,036 research outputs found
Using Coronal Loops to Reconstruct the Magnetic Field of an Active Region Before and After a Major Flare
The shapes of solar coronal loops are sensitive to the presence of electrical
currents that are the carriers of the nonpotential energy available for
impulsive activity. We use this information in a new method for modeling the
coronal magnetic field of AR 11158 as a nonlinear force-free field (NLFFF). The
observations used are coronal images around time of major flare activity on
2011/02/15, together with the surface line-of-sight magnetic field
measurements. The data are from the Helioseismic and Magnetic Imager and
Atmospheric Imaging Assembly (HMI and AIA, respectively) onboard the Solar
Dynamics Observatory (SDO). The model fields are constrained to approximate the
coronal loop configurations as closely as possible, while also subject to the
force-free constraints. The method does not use transverse photospheric
magnetic field components as input, and is thereby distinct from methods for
modeling NLFFFs based on photospheric vector magnetograms. We validate the
method using observations of AR 11158 at a time well before major flaring, and
subsequently review the field evolution just prior to and following an X2.2
flare and associated eruption. The models indicate that the energy released
during the instability is about erg, consistent with what is
needed to power such a large eruptive flare. Immediately prior to the eruption
the model field contains a compact sigmoid bundle of twisted flux that is not
present in the post-eruption models, which is consistent with the observations.
The core of that model structure is twisted by full turns about
its axis.Comment: ApJ, in pres
Seismic Constraints on Interior Solar Convection
We constrain the velocity spectral distribution of global-scale solar
convective cells at depth using techniques of local helioseismology. We
calibrate the sensitivity of helioseismic waves to large-scale convective cells
in the interior by analyzing simulations of waves propagating through a
velocity snapshot of global solar convection via methods of time-distance
helioseismology. Applying identical analysis techniques to observations of the
Sun, we are able to bound from above the magnitudes of solar convective cells
as a function of spatial convective scale. We find that convection at a depth
of with spatial extent , where is the
spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s
or less. Convective features deeper than are more difficult
to image due to the rapidly decreasing sensitivity of helioseismic waves.Comment: accepted, ApJ Letters, 5 figures, 10 pages (in this version
Modeling Magnetic Field Structure of a Solar Active Region Corona using Nonlinear Force-Free Fields in Spherical Geometry
We test a nonlinear force-free field (NLFFF) optimization code in spherical
geometry using an analytical solution from Low and Lou. Several tests are run,
ranging from idealized cases where exact vector field data are provided on all
boundaries, to cases where noisy vector data are provided on only the lower
boundary (approximating the solar problem). Analytical tests also show that the
NLFFF code in the spherical geometry performs better than that in the Cartesian
one when the field of view of the bottom boundary is large, say, . Additionally, We apply the NLFFF model to an active region
observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar
Dynamics Observatory (SDO) both before and after an M8.7 flare. For each
observation time, we initialize the models using potential field source surface
(PFSS) extrapolations based on either a synoptic chart or a flux-dispersal
model, and compare the resulting NLFFF models. The results show that NLFFF
extrapolations using the flux-dispersal model as the boundary condition have
slightly lower, therefore better, force-free and divergence-free metrics, and
contain larger free magnetic energy. By comparing the extrapolated magnetic
field lines with the extreme ultraviolet (EUV) observations by the Atmospheric
Imaging Assembly (AIA) on board SDO, we find that the NLFFF performs better
than the PFSS not only for the core field of the flare productive region, but
also for large EUV loops higher than 50 Mm.Comment: 34 pages, 8 figures, accepted for publication in Ap
Space-time segmentation method for study of the vertical structure and evolution of solar supergranulation from data provided by local helioseismology
Solar supergranulation remains a mystery in spite of decades of intensive
studies. Most of the papers about supergranulation deal with its surface
properties. Local helioseismology provides an opportunity to look below the
surface and see the vertical structure of this convective structure. We present
a concept of a (3+1)-D segmentation algorithm capable of recognising individual
supergranules in a sequence of helioseismic 3-D flow maps. As an example, we
applied this method to the state-of-the-art data and derived descriptive
statistical properties of segmented supergranules -- typical size of 20--30 Mm,
characteristic lifetime of 18.7 hours, and estimated depth of 15--20 Mm. We
present preliminary results obtained on the topic of the three-dimensional
structure and evolution of supergranulation. The method has a great potential
in analysing the better data expected from the helioseismic inversions, which
are being developed.Comment: 6 pages, 4 figures, accepted in New Astronom
Coronal radiation belts
The magnetic field of the solar corona has a large-scale dipole character,
which maps into the bipolar field in the solar wind. Using standard
representations of the coronal field, we show that high-energy ions can be
trapped stably in these large-scale closed fields. The drift shells that
describe the conservation of the third adiabatic invariant may have complicated
geometries. Particles trapped in these zones would resemble the Van Allen Belts
and could have detectable consequences. We discuss potential sources of trapped
particles
A Method for Data-Driven Simulations of Evolving Solar Active Regions
We present a method for performing data-driven simulations of solar active
region formation and evolution. The approach is based on magnetofriction, which
evolves the induction equation assuming the plasma velocity is proportional to
the Lorentz force. The simulations of active region coronal field are driven by
temporal sequences of photospheric magnetograms from the Helioseismic Magnetic
Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Under
certain conditions, the data-driven simulations produce flux ropes that are
ejected from the modeled active region due to loss of equilibrium. Following
the ejection of flux ropes, we find an enhancement of the photospheric
horizontal field near the polarity inversion line. We also present a method for
the synthesis of mock coronal images based on a proxy emissivity calculated
from the current density distribution in the model. This method yields mock
coronal images that are somewhat reminiscent of images of active regions taken
by instruments such as SDO's Atmospheric Imaging Assembly (AIA) at extreme
ultraviolet wavelengths.Comment: Accepted to ApJ; comments/questions related to this article are
welcome via e-mail, even after publicatio
The Influence of Spatial Resolution on Nonlinear Force-Free Modeling
The nonlinear force-free field (NLFFF) model is often used to describe the
solar coronal magnetic field, however a series of earlier studies revealed
difficulties in the numerical solution of the model in application to
photospheric boundary data. We investigate the sensitivity of the modeling to
the spatial resolution of the boundary data, by applying multiple codes that
numerically solve the NLFFF model to a sequence of vector magnetogram data at
different resolutions, prepared from a single Hinode/SOT-SP scan of NOAA Active
Region 10978 on 2007 December 13. We analyze the resulting energies and
relative magnetic helicities, employ a Helmholtz decomposition to characterize
divergence errors, and quantify changes made by the codes to the vector
magnetogram boundary data in order to be compatible with the force-free model.
This study shows that NLFFF modeling results depend quantitatively on the
spatial resolution of the input boundary data, and that using more highly
resolved boundary data yields more self-consistent results. The free energies
of the resulting solutions generally trend higher with increasing resolution,
while relative magnetic helicity values vary significantly between resolutions
for all methods. All methods require changing the horizontal components, and
for some methods also the vertical components, of the vector magnetogram
boundary field in excess of nominal uncertainties in the data. The solutions
produced by the various methods are significantly different at each resolution
level. We continue to recommend verifying agreement between the modeled field
lines and corresponding coronal loop images before any NLFFF model is used in a
scientific setting.Comment: Accepted to ApJ; comments/corrections to this article are welcome via
e-mail, even after publicatio
Direct Measurements of Magnetic Twist in the Solar Corona
In the present work we study evolution of magnetic helicity in the solar
corona. We compare the rate of change of a quantity related to the magnetic
helicity in the corona to the flux of magnetic helicity through the photosphere
and find that the two rates are similar. This gives observational evidence that
helicity flux across the photosphere is indeed what drives helicity changes in
solar corona during emergence.
For the purposes of estimating coronal helicity we neither assume a strictly
linear force-free field, nor attempt to construct a non-linear force-free
field. For each coronal loop evident in Extreme Ultraviolet (EUV) we find a
best-matching line of a linear force-free field and allow the twist parameter
alpha to be different for each line. This method was introduced and its
applicability was discussed in Malanushenko et. al. (2009).
The object of the study is emerging and rapidly rotating AR 9004 over about
80 hours. As a proxy for coronal helicity we use the quantity
averaged over many reconstructed lines of magnetic field. We argue that it is
approximately proportional to "flux-normalized" helicity H/Phi^2, where H is
helicity and Phi is total enclosed magnetic flux of the active region. The time
rate of change of such quantity in the corona is found to be about 0.021
rad/hr, which is compatible with the estimates for the same region obtained
using other methods Longcope et. al. (2007), who estimated the flux of
normalized helicity of about 0.016 rad/hr
- …