8,393 research outputs found
Monte Carlo aided design of the inner muon veto detectors for the Double Chooz experiment
The Double Chooz neutrino experiment aims to measure the last unknown
neutrino mixing angle theta_13 using two identical detectors positioned at
sites both near and far from the reactor cores of the Chooz nuclear power
plant. To suppress correlated background induced by cosmic muons in the
detectors, they are protected by veto detector systems. One of these systems is
the inner muon veto. It is an active liquid scintillator based detector and
instrumented with encapsulated photomultiplier tubes. In this paper we describe
the Monte Carlo aided design process of the inner muon veto, that resulted in a
detector configuration with 78 PMTs yielding an efficiency of 99.978 +- 0.004%
for rejecting muon events and an efficiency of >98.98% for rejecting correlated
events induced by muons. A veto detector of this design is currently used at
the far detector site and will be built and incorporated as the muon
identification system at the near site of the Double Chooz experiment
The Stochastic Dynamics of Rectangular and V-shaped Atomic Force Microscope Cantilevers in a Viscous Fluid and Near a Solid Boundary
Using a thermodynamic approach based upon the fluctuation-dissipation theorem
we quantify the stochastic dynamics of rectangular and V-shaped microscale
cantilevers immersed in a viscous fluid. We show that the stochastic cantilever
dynamics as measured by the displacement of the cantilever tip or by the angle
of the cantilever tip are different. We trace this difference to contributions
from the higher modes of the cantilever. We find that contributions from the
higher modes are significant in the dynamics of the cantilever tip-angle. For
the V-shaped cantilever the resulting flow field is three-dimensional and
complex in contrast to what is found for a long and slender rectangular
cantilever. Despite this complexity the stochastic dynamics can be predicted
using a two-dimensional model with an appropriately chosen length scale. We
also quantify the increased fluid dissipation that results as a V-shaped
cantilever is brought near a solid planar boundary.Comment: 10 pages, 15 images, corrected equation (8
The introduction of the TMPG fails charge for U.S. Treasury securities
The TMPG fails charge for U.S. Treasury securities provides that a buyer of Treasury securities can claim monetary compensation from the seller if the seller fails to deliver the securities on a timely basis. The charge was introduced in May 2009 and replaced an existing market convention of simply postponing—without any explicit penalty and at an unchanged invoice price—a seller’s obligation to deliver Treasury securities if the seller fails to deliver the securities on a scheduled settlement date. This article explains how a proliferation of settlement fails following the insolvency of Lehman Brothers Holdings Inc. in September 2008 led the Treasury Market Practices Group (TMPG)—a group of market professionals committed to supporting the integrity and efficiency of the U.S. Treasury market—to promote a change in the existing market convention. The change—the introduction of the fails charge—was significant because it mitigated an important dysfunctionality in the secondary market for U.S. Treasury securities and because it stands as an example of the value of cooperation between the public and private sectors in responding to altered market conditions in a flexible, timely, and innovative fashion.Treasury bonds ; Government securities ; Clearing of securities ; Secondary markets
Noncovariant gauge fixing in the quantum Dirac field theory of atoms and molecules
Starting from the Weyl gauge formulation of quantum electrodynamics (QED),
the formalism of quantum-mechanical gauge fixing is extended using techniques
from nonrelativistic QED. This involves expressing the redundant gauge degrees
of freedom through an arbitrary functional of the gauge-invariant transverse
degrees of freedom. Particular choices of functional can be made to yield the
Coulomb gauge and Poincar\'{e} gauge representations. The Hamiltonian we derive
therefore serves as a good starting point for the description of atoms and
molecules by means of a relativistic Dirac field. We discuss important
implications for the ontology of noncovariant canonical QED due to the gauge
freedom that remains present in our formulation.Comment: 8 pages, 0 figure
Thin-film flow in helically wound shallow channels of arbitrary cross-sectional shape
We consider the steady, gravity-driven flow of a thin film of viscous fluid down a helically wound shallow channel of arbitrary cross-sectional shape with arbitrary torsion and curvature. This extends our previous work [D. J. Arnold et al., “Thin-film flow in helically-wound rectangular channels of arbitrary torsion and curvature,” J. Fluid Mech. 764, 76–94 (2015)] on channels of rectangular cross section. The Navier-Stokes equations are expressed in a novel, non-orthogonal coordinate system fitted to the channel bottom. By assuming that the channel depth is small compared to its width and that the fluid depth in the vertical direction is also small compared to its typical horizontal extent, we are able to solve for the velocity components and pressure analytically. Using these results, a differential equation for the free surface shape is obtained, which must in general be solved numerically. Motivated by the aim of understanding flows in static spiral particle separators used in mineral processing, we investigate the effect of cross-sectional shape on the secondary flow in the channel cross section. We show that the competition between gravity and inertia in non-rectangular channels is qualitatively similar to that in rectangular channels, but that the cross-sectional shape has a strong influence on the breakup of the secondary flow into multiple clockwise-rotating cells. This may be triggered by small changes to the channel geometry, such as one or more bumps in the channel bottom that are small relative to the fluid depth. In contrast to the secondary flow which is quite sensitive to small bumps in the channel bottom, the free-surface profile is relatively insensitive to these. The sensitivity of the flow to the channel geometry may have important implications for the design of efficient spiral particle separators.D. J. Arnold, Y. M. Stokes, and J. E. F. Gree
Targeted interventions for patellofemoral pain syndrome (TIPPS): classification of clinical subgroups
Introduction Patellofemoral pain (PFP) can cause significant pain leading to limitations in societal participation and physical activity. An international expert group has highlighted the need for a classification system to allow targeted intervention for patients with PFP; we have developed a work programme systematically investigating this. We have proposed six potential subgroups: hip abductor weakness, quadriceps weakness, patellar hypermobility, patellar hypomobility, pronated foot posture and lower limb biarticular muscle tightness. We could not uncover any evidence of the relative frequency with which patients with PFP fell into these subgroups or whether these subgroups were mutually exclusive. The aim of this study is to provide information on the clinical utility of our classification system.
Methods and analysis 150 participants will be recruited over 18 months in four National Health Services (NHS) physiotherapy departments in England. Inclusion criteria: adults 18–40 years with PFP for longer than 3 months, PFP in at least two predesignated functional activities and PFP elicited by clinical examination. Exclusion criteria: prior or forthcoming lower limb surgery; comorbid illness or health condition; and lower limb training or pregnancy. We will record medical history, demographic details, pain, quality of life, psychomotor movement awareness and knee temperature. We will assess hip abductor and quadriceps weakness, patellar hypermobility and hypomobility, foot posture and lower limb biarticular muscle tightness.
The primary analytic approach will be descriptive. We shall present numbers and percentages of participants who meet the criteria for membership of (1) each of the subgroups, (2) none of the subgroups and (3) multiple subgroups. Exact (binomial) 95% CIs for these percentages will also be presented.
Ethics and dissemination This study has been approved by National Research Ethics Service (NRES) Committee North West—Greater Manchester North (11/NW/0814) and University of Central Lancashire (UCLan) Built, Sport, Health (BuSH) Ethics Committee (BuSH 025). An abstract has been accepted for the third International Patellofemoral Pain Research Retreat, Vancouver, September 2013
The attenuation characteristics of four specially designed mufflers tested on a practical engine setup
Attenuation characteristics of four different resonator mufflers were determined in both cold tests and engine field tests and compared with the theoretical calculations. These mufflers were specifically designed for a helicopter. Engine-exhaust sound pressures, temperatures, and noise levels from the helicopter were measured. The experimental muffler cold tests indicated close a agreement with theory, whereas the engine tests indicated some discrepancies. Test results show the usefulness of the theoretical equation used for predicting muffler attenuation characteristics
Consequences of asteroid fragmentation during impact hazard mitigation
The consequences of the fragmentation of an Earth-threatening asteroid due to an attempted deflection are examined in this paper. The minimum required energy for a successful impulsive deflection of a threatening object is computed and compared to the energy required to break up a small size asteroid. The results show that the fragmentation of an asteroid that underwent an impulsive deflection, such as a kinetic impact or a nuclear explosion, is a very plausible event.Astatistical model is used to approximate the number and size of the fragments as well as the distribution of velocities at the instant after the deflection attempt takes place. This distribution of velocities is a function of the energy provided by the deflection attempt, whereas the number and size of the asteroidal fragments is a function of the size of the largest fragment. The model also takes into account the gravity forces that could lead to a reaggregation of the asteroid after fragmentation. The probability distribution of the pieces after the deflection is then propagated forward in time until the encounter with Earth. A probability damage factor (i.e., expected damage caused by a given size fragment multiplied by its impact probability) is then computed and analyzed for different plausible scenarios, characterized by different levels of deflection energies and lead times
- …