2,186 research outputs found

    Novel geometrical concept of a high-performance brain PET scanner. Principle, design and performance estimates

    Get PDF
    We present the principle, a possible implementation and performance estimates of a novel geometrical concept for a high-resolution positron emission tomograph. The concept, which can be for example implemented in a brain PET device, promises to lead to an essentially parallax-free 3D image reconstruction with excellent spatial resolution and constrast, uniform over the complete field of view. The key components are matrices of long axially oriented scintillator crystals which are read out at both extremities by segmented Hybrid Photon Detectors. We discuss the relevant design considerations for a 3D axial PET camera module, motivate parameter and material choices, and estimate its performance in terms of spatial and energy resolution. We support these estimates by Monte Carlo simulations and in some cases by first experimental results. From the performance of a camera module, we extrapolate to the reconstruction resolution of a 3D axial PET scanner in a semi-analytical way and compare it to an existing state-of-the art brain PET device. We finally describe a dedicated data acquisition system, capable to fully exploit the advantages of the proposed concept. We conclude that the proposed 3D axial concept and the discussed implementation is a competitive approach for high-resolution brain PET. Excellent energy resolution and Compton enhanced sensitivity are expected to lead to high-quality reconstruction and reduced scanning times

    EndCap Module Production for the ATLAS Silicon Tracker (SCT) at CERN and the University of Geneva

    Get PDF
    This note describes the infrastructure, procedure and quality assurance for the construction of approximately one third of the EndCap modules for the ATLAS Semiconductor Tracker (SCT) by groups at the University of Geneva and CERN

    Feasibility of a novel design of high resolution parallax-free Compton enhanced PET scanner dedicated to brain research*

    Get PDF
    A novel concept for a positron emission tomography (PET) camera module is proposed, which provides full 3D reconstruction with high resolution over the total detector volume, free of parallax errors. The key components are a matrix of long scintillator crystals and hybrid photon detectors (HPDs) with matched segmentation and integrated readout electronics. The HPDs read out the two ends of the scintillator package. Both excellent spatial (x, y, z) and energy resolution are obtained. The concept allows enhancing the detection efficiency by reconstructing a significant fraction of events which underwent Compton scattering in the crystals. The proof of concept will first be demonstrated with yttrium orthoaluminate perovskite (YAP):Ce crystals, but the final design will rely on other scintillators more adequate for PET applications (e.g. LSO:Ce or LaBr3:Ce). A promising application of the proposed camera module, which is currently under development, is a high resolution 3D brain PET camera with an axial field-of-view of approximately 15 cm dedicated to brain research. The design philosophy and performance predictions based on analytical calculations and Monte Carlo simulations are presented. Image correction and reconstruction tools required to operate this transmissionless device in a research environment are also discussed. Better or similar performance parameters were obtained compared to other known designs at lower fabrication cost. The axial geometrical concept also seems to be promising for applications such as positron emission mammography

    Measurements of inclusive W and Z cross sections in pp collisions at ps = 7 TeV

    Get PDF
    40 páginas, 8 figuras, 5 tablas.-- Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.-- CMS Collaboration: et al.Measurements of inclusive W and Z boson production cross sections in pp collisions at ps = 7 TeV are presented, based on 2:9 pb1 of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give (pp ! WX) B(W ! ` ) = 9:95 0:07 (stat.) 0:28 (syst.) 1:09 (lumi.) nb and (pp ! ZX) B(Z ! `+`) = 0:931 0:026 (stat.) 0:023 (syst.) 0:102 (lumi.) nb, where ` stands for either e or . Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported.This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scienti que, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat a l'Énergie Atomique, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germa-ny; the General Secretariat for Research and Technology, Greece; the National Scienti c Research Foundation, and National O ce for Research and Technology, Hungary; the Department of Atomic Energy, and Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Pakistan Atomic Energy Commission; the State Commission for Scienti c Research, Poland; the Fundaçâo para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, and Russian Ministry of Atomic Energy; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovación, and Programa Consolider- Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scienti c and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scienti co e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Ágriculture (FRIA-Belgium); and the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium).Peer reviewe

    Measurement of the B+ Production Cross Section in pp Collisions at √s=7  TeV

    Get PDF
    15 páginas, 2 figuras, 1 tabla.-- PACS numbers: 13.85.Ni, 12.38.Bx, 14.40.Nd.-- Creative Commons Attribution 3.0 License.-- CMS Collaboration: et al.Measurements of the total and differential cross sections dσ/dpTB and dσ/dyB for B+ mesons produced in pp collisions at √s=7  TeV are presented. The data correspond to an integrated luminosity of 5.8  pb-1 collected by the CMS experiment operating at the LHC. The exclusive decay B+→J/ψK+, with J/ψ→μ+μ-, is used to detect B+ mesons and to measure the production cross section as a function of pTB and yB. The total cross section for pTB>5  GeV and |yB|<2.4 is measured to be 28.1±2.4±2.0±3.1  μb, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.Acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland).Peer reviewe

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Ultrarelativistic sources in nonlinear electrodynamics

    Get PDF
    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure

    Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP

    Get PDF
    The cross section for open-beauty production in photon-photon collisions is measured using the whole high-energy and high-luminosity data sample collected by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events containing b quarks are identified through their semi-leptonic decay into electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our fiducial volume and then extrapolated to the full phase space. These results are found to be in significant excess with respect to Monte Carlo predictions and next-to-leading order QCD calculations

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu
    corecore