2,027 research outputs found

    Kepler Mission Stellar and Instrument Noise Properties Revisited

    Full text link
    An earlier study of the Kepler Mission noise properties on time scales of primary relevance to detection of exoplanet transits found that higher than expected noise followed to a large extent from the stars, rather than instrument or data analysis performance. The earlier study over the first six quarters of Kepler data is extended to the full four years ultimately comprising the mission. Efforts to improve the pipeline data analysis have been successful in reducing noise levels modestly as evidenced by smaller values derived from the current data products. The new analyses of noise properties on transit time scales show significant changes in the component attributed to instrument and data analysis, with essentially no change in the inferred stellar noise. We also extend the analyses to time scales of several days, instead of several hours to better sample stellar noise that follows from magnetic activity. On the longer time scale there is a shift in stellar noise for solar-type stars to smaller values in comparison to solar values.Comment: 10 pages, 8 figures, accepted by A

    Parental stress increases body mass index trajectory in pre-adolescents.

    Get PDF
    What is already known about this subjectRates of childhood obesity have increased since the mid-1970s. Research into behavioural determinants has focused on physical inactivity and unhealthy diets. Cross-sectional studies indicate an association between psychological stress experienced by parents and obesity in pre-adolescents.What this study addsWe provide evidence of a prospective association between parental psychological stress and increased weight gain in pre-adolescents. Family-level support for those experiencing chronic stress might help promote healthy diet and exercise behaviours in children.ObjectiveWe examined the impact of parental psychological stress on body mass index (BMI) in pre-adolescent children over 4 years of follow-up.MethodsWe included 4078 children aged 5-10 years (90% were between 5.5 and 7.5 years) at study entry (2002-2003) in the Children's Health Study, a prospective cohort study in southern California. A multi-level linear model simultaneously examined the effect of parental stress at study entry on the attained BMI at age 10 and the slope of change across annual measures of BMI during follow-up, controlled for the child's age and sex. BMI was calculated based on objective measurements of height and weight by trained technicians following a standardized procedure.ResultsA two standard deviation increase in parental stress at study entry was associated with an increase in predicted BMI attained by age 10 of 0.287 kg m(-2) (95% confidence interval 0.016-0.558; a 2% increase at this age for a participant of average attained BMI). The same increase in parental stress was also associated with an increased trajectory of weight gain over follow-up, with the slope of change in BMI increased by 0.054 kg m(-2) (95% confidence interval 0.007-0.100; a 7% increase in the slope of change for a participant of average BMI trajectory).ConclusionsWe prospectively demonstrated a small effect of parental stress on BMI at age 10 and weight gain earlier in life than reported previously. Interventions to address the burden of childhood obesity should address the role of parental stress in children

    Resolving the Controversy Over the Core Radius of 47 Tucanae (NGC 104)

    Get PDF
    This paper investigates the discrepancy between recent measurements of the density profile of the globular cluster 47 Tuc that have used HST data sets. Guhathakurta et al. (1992) used pre-refurbishment WFPC1 V-band images to derive r_c = 23" +/- 2". Calzetti et al. (1993) suggested that the density profile is a superposition of two King profiles (r_c = 8" and r_c = 25") based on U-band FOC images. De Marchi et al. (1996) used deep WFPC1 U-band images to derive r_c = 12" +/- 2". Differences in the adopted cluster centers are not the cause of the discrepancy. Our independent analysis of the data used by De Marchi et al. reaches the following conclusions: (1) De Marchi et al.'s r_c ~ 12" value is spuriously low, a result of radially-varying bias in the star counts in a magnitude limited sample -- photometric errors and a steeply rising stellar luminosity function cause more stars to scatter across the limiting magnitude into the sample than out of it, especially near the cluster center where crowding effects are most severe. (2) Changing the limiting magnitude to the main sequence turnoff, away from the steep part of the luminosity function, partially alleviates the problem and results in r_c = 18". (3) Combining such a limiting magnitude with accurate photometry derived from PSF fitting, instead of the less accurate aperture photometry employed by De Marchi et al., results in a reliable measurement of the density profile which is well fit by r_c = 22" +/- 2". Archival WFPC2 data are used to derive a star list with a higher degree of completeness, greater photometric accuracy, and wider areal coverage than the WFPC1 and FOC data sets; the WFPC2-based density profile supports the above conclusions, yielding r_c = 24" +/- 1.9".Comment: 22 pages, 5 figures, 1 table; accepted for publication in PASP; see http://www.ucolick.org/~raja/hgg.tar.gz for full-resolution figure

    Hubble Space Telescope times-series photometry of the planetary transit of HD189733: no moon, no rings, starspots

    Full text link
    We monitored three transits of the giant gas planet around the nearby K dwarf HD 189733 with the ACS camera on the Hubble Space Telescope. The resulting very-high accuracy lightcurve (signal-to-noise ratio near 15000 on individual measurements, 35000 on 10-minute averages) allows a direct geometric measurement of the orbital inclination, radius ratio and scale of the system: i = 85.68 +- 0.04, Rpl/R*=0.1572 +- 0.0004, a/R*=8.92 +- 0.09. We derive improved values for the stellar and planetary radius, R*=0.755+- 0.011 Rsol, Rpl=1.154 +- 0.017 RJ, and the transit ephemerides, Ttr=2453931.12048 +- 0.00002 + n 2.218581 +- 0.000002$. The HST data also reveal clear evidence of the planet occulting spots on the surface of the star. At least one large spot complex (>80000 km) is required to explain the observed flux residuals and their colour evolution. This feature is compatible in amplitude and phase with the variability observed simultaneously from the ground. No evidence for satellites or rings around HD 189733b is seen in the HST lightcurve. This allows us to exlude with a high probability the presence of Earth-sized moons and Saturn-type debris rings around this planet. The timing of the three transits sampled is stable to the level of a few seconds, excluding a massive second planet in outer 2:1 resonance.Comment: revised version. Significant updates and new figures; to appear in Astronomy and Astrophysic

    Population Models with Diffusion and Constant Yield Harvesting

    Get PDF
    In this paper we discuss reaction-diffusion equations arising in population dynamics with constant yield harvesting in one dimension. We focus on the mathematical models of the logistic growth, the strong Allee effect, and the weak Allee effect and their influence on the existence of positive steady states as well as global bifurcation diagrams. We analyze the equations using the quadrature method and the method of sub-super solutions

    A Far-Ultraviolet Survey of 47 Tucanae.II The Long-Period Cataclysmic Variable AKO 9

    Full text link
    We present time-resolved, far-ultraviolet (FUV) spectroscopy and photometry of the 1.1 day eclipsing binary system AKO 9 in the globular cluster 47 Tucanae. The FUV spectrum of AKO 9 is blue and exhibits prominent C IV and He II emission lines. The spectrum broadly resembles that of long-period, cataclysmic variables in the galactic field. Combining our time-resolved FUV data with archival optical photometry of 47 Tuc, we refine the orbital period of AKO 9 and define an accurate ephemeris for the system. We also place constraints on several other system parameters, using a variety of observational constraints. We find that all of the empirical evidence is consistent with AKO 9 being a long-period dwarf nova in which mass transfer is driven by the nuclear expansion of a sub-giant donor star. We therefore conclude that AKO 9 is the first spectroscopically confirmed cataclysmic variable in 47 Tuc. We also briefly consider AKO 9's likely formation and ultimate evolution. Regarding the former, we find that the system was almost certainly formed dynamically, either via tidal capture or in a 3-body encounter. Regarding the latter, we show that AKO 9 will probably end its CV phase by becoming a detached, double WD system or by exploding in a Type Ia supernova.Comment: 40 pages, 11 figures, to appear in the Dec 20 issue of ApJ; minor changes to match final published versio
    • …
    corecore