2,133 research outputs found
Quantized Dispersion of Two-Dimensional Magnetoplasmons Detected by Photoconductivity Spectroscopy
We find that the long-wavelength magnetoplasmon, resistively detected by
photoconductivity spectroscopy in high-mobility two-dimensional electron
systems, deviates from its well-known semiclassical nature as uncovered in
conventional absorption experiments. A clear filling-factor dependent
plateau-type dispersion is observed that reveals a so far unknown relation
between the magnetoplasmon and the quantum Hall effect.Comment: 5 pages, 3 figure
Microstrip superconducting quantum interference device amplifiers with submicron Josephson junctions: enhanced gain at gigahertz frequencies
We present measurements of an amplifier based on a dc superconducting quantum
interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The
small junction size reduces their self-capacitance and allows for the use of
relatively large resistive shunts while maintaining nonhysteretic operation.
This leads to an enhancement of the SQUID transfer function compared to SQUIDs
with micron-scale junctions. The device layout is modified from that of a
conventional SQUID to allow for coupling signals into the amplifier with a
substantial mutual inductance for a relatively short microstrip coil.
Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.Comment: Version with high resolution figures at:
http://physics.syr.edu/~bplourde/bltp-publications.ht
Time-Resolved Studies of a Rolled-Up Semiconductor Microtube Laser
We report on lasing in rolled-up microtube resonators. Time-resolved studies
on these semiconductor lasers containing GaAs quantum wells as optical gain
material reveal particularly fast turn-on-times and short pulse emissions above
the threshold. We observe a strong red-shift of the laser mode during the pulse
emission which is compared to the time evolution of the charge-carrier density
calculated by rate equations
Three-Dimensionally Confined Optical Modes in Quantum Well Microtube Ring Resonators
We report on microtube ring resonators with quantum wells embedded as an
optically active material. Optical modes are observed over a broad energy
range. Their properties strongly depend on the exact geometry of the microtube
along its axis. In particular we observe (i) preferential emission of light on
the inside edge of the microtube and (ii) confinement of light also in
direction of the tube axis by an axially varying geometry which is explained in
an expanded waveguide model.Comment: 5 pages, 4 figure
Picovoltmeter for probing vortex dynamics in a single weak-pinning Corbino channel
We have developed a picovoltmeter using a Nb dc Superconducting QUantum
Interference Device (SQUID) for measuring the flux-flow voltage from a small
number of vortices moving through a submicron weak-pinning superconducting
channel. We have applied this picovoltmeter to measure the vortex response in a
single channel arranged in a circle on a Corbino disk geometry. The circular
channel allows the vortices to follow closed orbits without encountering any
sample edges, thus eliminating the influence of entry barriers.Comment: 4 pages, 3 figures, submitted to Review of Scientific Instrument
Microwave Response of Vortices in Superconducting Thin Films of Re and Al
Vortices in superconductors driven at microwave frequencies exhibit a response related to the interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time, the trapping of vortices in superconducting microwave resonant circuits contributes excess loss and can result in substantial reductions in the quality factor. Thus, understanding the microwave vortex response in superconducting thin films is important for the design of such circuits, including superconducting qubits and photon detectors, which are typically operated in small, but non-zero, magnetic fields. By cooling in fields of the order of 100 T and below, we have characterized the magnetic field and frequency dependence of the microwave response of a small density of vortices in resonators fabricated from thin films of Re and Al, which are common materials used in superconducting microwave circuits. Above a certain threshold cooling field, which is different for the Re and Al films, vortices become trapped in the resonators. Vortices in the Al resonators contribute greater loss and are influenced more strongly by flux creep effects than in the Re resonators. This different behavior can be described in the framework of a general vortex dynamics model
Picovoltmeter for Probing Vortex Dynamics in a Single Weak-Pinning Corbino Channel
We have developed a picovoltmeter using a Nb dc Superconducting QUantum Interference Device (SQUID) for measuring the flux-flow voltage from a small number of vortices moving through a submicron weak-pinning superconducting channel. We have applied this picovoltmeter to measure the vortex response in a single channel arranged in a circle on a Corbino disk geometry. The circular channel allows the vortices to follow closed orbits without encountering any sample edges, thus eliminating the influence of entry barriers
The Halo Mass Function: High-Redshift Evolution and Universality
We study the formation of dark matter halos in the concordance LCDM model
over a wide range of redshifts, from z=20 to the present. Our primary focus is
the halo mass function, a key probe of cosmology. By performing a large suite
of nested-box N-body simulations with careful convergence and error controls
(60 simulations with box sizes from 4 to 256 Mpc/h, we determine the mass
function and its evolution with excellent statistical and systematic errors,
reaching a few percent over most of the considered redshift and mass range.
Across the studied redshifts, the halo mass is probed over 6 orders of
magnitude (10^7 - 10^13.5 M_sun/h). Historically, there has been considerable
variation in the high redshift mass function as obtained by different groups.
We have made a concerted effort to identify and correct possible systematic
errors in computing the mass function at high redshift and to explain the
discrepancies between some of the previous results. We discuss convergence
criteria for the required force resolution, simulation box size, halo mass
range, initial and final redshift, and time stepping. Because of conservative
cuts on the mass range probed by individual boxes, our results are relatively
insensitive to simulation volume, the remaining sensitivity being consistent
with extended Press-Schechter theory. Previously obtained mass function fits
near z=0, when scaled by linear theory, are in good agreement with our results
at all redshifts, although a mild redshift dependence consistent with that
found by Reed and collaborators exists at low redshifts.Comment: 20 pages, 15 figures. Minor changes to the text and figures; results
and conclusions unchange
Shell structure and electron-electron interaction in self-assembled InAs quantum dots
Using far-infrared spectroscopy, we investigate the excitations of
self-organized InAs quantum dots as a function of the electron number per dot,
1<n<6, which is monitored in situ by capacitance spectroscopy. Whereas the
well-known two-mode spectrum is observed when the lowest s - states are filled,
we find a rich excitation spectrum for n=3, which reflects the importance of
electron-electron interaction in the present, strongly non-parabolic confining
potential. From capacitance spectroscopy we find that the electronic shell
structure in our dots gives rise to a distinct pattern in the charging energies
which strongly deviates from the monotonic behavior of the Coulomb blockade
found in mesoscopic or metallic structures.Comment: 4 pages, 3 PostScript figure
Microwave response of vortices in superconducting thin films of Re and Al
Vortices in superconductors driven at microwave frequencies exhibit a
response related to the interplay between the vortex viscosity, pinning
strength, and flux creep effects. At the same time, the trapping of vortices in
superconducting microwave resonant circuits contributes excess loss and can
result in substantial reductions in the quality factor. Thus, understanding the
microwave vortex response in superconducting thin films is important for the
design of such circuits, including superconducting qubits and photon detectors,
which are typically operated in small, but non-zero, magnetic fields. By
cooling in fields of the order of 100 T and below, we have characterized
the magnetic field and frequency dependence of the microwave response of a
small density of vortices in resonators fabricated from thin films of Re and
Al, which are common materials used in superconducting microwave circuits.
Above a certain threshold cooling field, which is different for the Re and Al
films, vortices become trapped in the resonators. Vortices in the Al resonators
contribute greater loss and are influenced more strongly by flux creep effects
than in the Re resonators. This different behavior can be described in the
framework of a general vortex dynamics model.Comment: Published in Physical Review B 79,174512(2009); preprint version with
higher resolution figures available at
http://physics.syr.edu/~bplourde/bltp-publications.ht
- …