190 research outputs found
\u3ci\u3eIam hiQ\u3c/i\u3eâA Novel Pair of Accuracy Indices for Imputed Genotypes
Background: Imputation of untyped markers is a standard tool in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However, high accuracy with which genotypes are imputed is fundamental. Several accuracy measures have been proposed and some are implemented in imputation software, unfortunately diversely across platforms. In the present paper, we introduce Iam hiQ, an independent pair of accuracy measures that can be applied to dosage files, the output of all imputation software. Iam (imputation accuracy measure) quantifies the average amount of individual-specific versus population-specific genotype information in a linear manner. hiQ (heterogeneity in quantities of dosages) addresses the inter-individual heterogeneity between dosages of a marker across the sample at hand.
Results: Applying both measures to a large caseâcontrol sample of the International Lung Cancer Consortium (ILCCO), comprising 27,065 individuals, we found meaningful thresholds for Iam and hiQ suitable to classify markers of poor accuracy. We demonstrate how Manhattan-like plots and moving averages of Iam and hiQ can be useful to identify regions enriched with less accurate imputed markers, whereas these regions would by missed when applying the accuracy measure info (implemented in IMPUTE2).
Conclusion: We recommend using Iam hiQ additional to other accuracy scores for variant filtering before stepping into the analysis of imputed GWAS data
Odor naming and interpretation performance in 881 schizophrenia subjects: association with clinical parameters
BACKGROUND: Olfactory function tests are sensitive tools for assessing sensory-cognitive processing in schizophrenia. However, associations of central olfactory measures with clinical outcome parameters have not been simultaneously studied in large samples of schizophrenia patients. METHODS: In the framework of the comprehensive phenotyping of the GRAS (Göttingen Research Association for Schizophrenia) cohort, we modified and extended existing odor naming (active memory retrieval) and interpretation (attribute assignment) tasks to evaluate them in 881 schizophrenia patients and 102 healthy controls matched for age, gender and smoking behavior. Associations with emotional processing, neuropsychological test performance and disease outcome were studied. RESULTS: Schizophrenia patients underperformed controls in both olfactory tasks. Odor naming deficits were primarily associated with compromised cognition, interpretation deficits with positive symptom severity and general alertness. Contrasting schizophrenia extreme performers of odor interpretation (best versus worst percentile; N=88 each) and healthy individuals (N=102) underscores the obvious relationship between impaired odor interpretation and psychopathology, cognitive dysfunctioning, and emotional processing (all p<0.004). CONCLUSIONS: The strong association of performance in higher olfactory measures, odor naming and interpretation, with lead symptoms of schizophrenia and determinants of disease severity highlights their clinical and scientific significance. Based on the results obtained here in an exploratory fashion in a large patient sample, the development of an easy-to-use clinical test with improved psychometric properties may be encouraged
The Chromo-Dielectric Soliton Model: Quark Self Energy and Hadron Bags
The chromo-dielectric soliton model (CDM) is Lorentz- and chirally-invariant.
It has been demonstrated to exhibit dynamical chiral symmetry breaking and
spatial confinement in the locally uniform approximation. We here study the
full nonlocal quark self energy in a color-dielectric medium modeled by a two
parameter Fermi function. Here color confinement is manifest. The self energy
thus obtained is used to calculate quark wave functions in the medium which, in
turn, are used to calculate the nucleon and pion masses in the one gluon
exchange approximation. The nucleon mass is fixed to its empirical value using
scaling arguments; the pion mass (for massless current quarks) turns out to be
small but non-zero, depending on the model parameters.Comment: 24 pages, figures available from the author
Genetic Analysis Workshop 16: Strategies for genome-wide association study analyses
National Institutes of Health (AR44422, N01-AR-7-2232); Genome Canada and Associations AFP; Polyarctique-Groupe Taitbout; Rhumatisme et Travail; Arthritis Research Campaign; National Institute of General Medical Sciences (R01 GM31575
Identifying rare variants from exome scans: the GAW17 experience
Genetic Analysis Workshop 17 (GAW17) provided a platform for evaluating existing statistical genetic methods and for developing novel methods to analyze rare variants that modulate complex traits. In this article, we present an overview of the 1000 Genomes Project exome data and simulated phenotype data that were distributed to GAW17 participants for analyses, the different issues addressed by the participants, and the process of preparation of manuscripts resulting from the discussions during the workshop
Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study
Background
Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer.
Methods and findings
We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01â1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15â2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79â1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84â0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25â2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results.
Conclusions
Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior
Identification of Susceptibility Pathways for the Role of Chromosome 15q25.1 in Modifying Lung Cancer Risk
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer
- âŠ