4 research outputs found

    On the extraction of electromagnetic properties of the Delta(1232) excitation from pion photoproduction

    Full text link
    Several methods for the treatment of pion photoproduction in the region of the Delta(1232) resonance are discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we try to relate the various values for the ratio R_{EM} of the E2 to M1 multipole excitation strengths for the Delta(1232) resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due to some phenomenological contributions entering the models.Comment: 22 pages revtex including 7 postscript figure

    The ρ\rho Spectral Function in a Relativistic Resonance Model

    Full text link
    We calculate the spectral function AρA_\rho of the ρ\rho meson in nuclear matter. The calculation is performed in the {\it low density} approximation, where the in-medium self energy Σmed\Sigma_{med} is completely determined by the vacuum ρN\rho N forward scattering amplitude. This amplitude is derived from a relativistic resonance model. In comparison to previous non-relativistic calculations we find a much weaker momentum dependence of Σmed\Sigma_{med}, especially in the transverse channel. Special attention is paid to uncertainties in the model. Thus, we compare the impact of different coupling schemes for the RNρRN\rho interaction on the results and discuss various resonance parameter sets.Comment: 47 pages, 19 figures, some discussion and formulae added, minor typos removed, accepted for publication in Nuclear Physics

    Charged current weak electroproduction of Delta resonance

    Full text link
    We study the weak production of Δ\Delta (i.e. e+pΔ0+νee^{-} + p \to \Delta^{0}+ \nu_{e} and e++pΔ+++νˉee^{+} + p \to \Delta^{++} + \bar{\nu}_{e}) in the intermediate energy range corresponding to the Mainz and TJNAF electron accelerators. The differential cross sections σ(θ)\sigma(\theta) are found to be of the order of 1039 10^{-39} cm2^2/sr, over a range of angles which increases with energy. The possibility of observing these reactions with the high luminosities available at these accelerators, and studying the weak N-Δ\Delta transition form factors through these reactions is discussed. The production cross section of N(1440)^*(1440) in the kinematic region of Δ\Delta production is also estimated and found to be small.Comment: 19 pages, REVTEX, 4 figure

    Cold Accretion Disks and Lineless Quasars

    Full text link
    The optical-UV continuum of quasars is broadly consistent with the emission from a geometrically thin optically thick accretion disk (AD). The AD produces the ionizing continuum which powers the broad and narrow emission lines. The maximum AD effective temperature is given by Teff=fmax(Mdot/M^2)^1/4, where M is the black hole mass, Mdot the accretion rate, and fmax is set by the black hole spin a_*. For a low enough value of Mdot/M^2 the AD may become too cold to produce ionizing photons. Such an object will form a lineless quasar. This occurs for a local blackbody (BB) AD with a luminosity Lopt=10^46 erg/s for M>3.6E9 Msun, when a_*=0, and for M>1.4E10 Msun, when a_*=0.998. Using the AD based Mdot, derived from M and Lopt, and the reverberation based M, derived from Lopt and the Hbeta FWHM, v, gives Teff \propto Lopt^-0.13v^-1.45. Thus, Teff is mostly set by v. Quasars with a local BB AD become lineless for v> 8,000 km/s, when a_*=0, and for v> 16,000 km/s, when a_*=0.998. Higher values of v are required if the AD is hotter than a local BB. The AD becoming non-ionizing may explain why line emitting quasars with v>10,000 km/s are rare. Weak low ionization lines may still be present if the X-ray continuum is luminous enough, and such objects may form a population of weak emission line quasars (WLQ). If correct, such WLQ should show a steeply falling SED at lambda<1000A. Such an SED was observed by Hryniewicz et al. in SDSS J094533.99+100950.1, a WLQ observed down to 570A, which is well modeled by a rather cold AD SED. UV spectroscopy of z~1-2 quasars is required to eliminate potential intervening Lyman limit absorption by the intergalactic medium (IGM), and to explore if the SEDs of lineless quasars and some additional WLQ are also well fit by a cold AD SED.Comment: Accepted for publication in MNRA
    corecore