1 research outputs found

    Analytic Perturbation Theory for Practitioners and Upsilon Decay

    Full text link
    Within the ghost-free Analytic Perturbation Theory (APT), devised in the last decade for low energy QCD, simple approximations are proposed for 3-loop analytic couplings and their effective powers, in both the space-like (Euclidean) and time-like (Minkowskian) regions, accurate enough in the large range (1--100 GeV) of current physical interest.\par Effectiveness of the new Model is illustrated by the example of Υ(1S)\Upsilon(1\mathrm{S}) decay where the standard analysis gives αs(MΥ)=0.170±0.004\alpha_s(M_{\Upsilon})=0.170\pm 0.004 value that is inconsistent with the bulk of data for αs\alpha_s. Instead, we obtain αsMod(MΥ)=0.185±0.005\alpha_s^{Mod}(M_{\Upsilon})=0.185\pm 0.005 that corresponds to αsMod(MZ)=0.120±0.002\alpha_s^{Mod}(M_Z)=0.120\pm 0.002 that is close to the world average.\par The issue of scale uncertainty for Υ\Upsilon decay is also discussed.Comment: 12 pages, 0 figures. Model slightly modified to increase its accuracy. Numerical results upgraded, references added. The issue of scale uncertainty is discusse
    corecore