594 research outputs found

    Counting Berg partitions

    Full text link
    We call a Markov partition of a two dimensional hyperbolic toral automorphism a Berg partition if it contains just two rectangles. We describe all Berg partitions for a given hyperbolic toral automorphism. In particular there are exactly (k + n + l + m)/2 nonequivalent Berg partitions with the same connectivity matrix (k, l, m, n)

    Approximate resonance states in the semigroup decomposition of resonance evolution

    Full text link
    The semigroup decomposition formalism makes use of the functional model for C.0C_{.0} class contractive semigroups for the description of the time evolution of resonances. For a given scattering problem the formalism allows for the association of a definite Hilbert space state with a scattering resonance. This state defines a decomposition of matrix elements of the evolution into a term evolving according to a semigroup law and a background term. We discuss the case of multiple resonances and give a bound on the size of the background term. As an example we treat a simple problem of scattering from a square barrier potential on the half-line.Comment: LaTex 22 pages 3 figure

    Minimal symmetric Darlington synthesis

    Get PDF
    We consider the symmetric Darlington synthesis of a p x p rational symmetric Schur function S with the constraint that the extension is of size 2p x 2p. Under the assumption that S is strictly contractive in at least one point of the imaginary axis, we determine the minimal McMillan degree of the extension. In particular, we show that it is generically given by the number of zeros of odd multiplicity of I-SS*. A constructive characterization of all such extensions is provided in terms of a symmetric realization of S and of the outer spectral factor of I-SS*. The authors's motivation for the problem stems from Surface Acoustic Wave filters where physical constraints on the electro-acoustic scattering matrix naturally raise this mathematical issue

    Search for associated Higgs boson production using like charge dilepton events in p(p)over-bar collisions at root s=1.96 TeV

    Get PDF
    We present a search for associated Higgs boson production in the process p (p) over bar -> W/ZH -> l(+/-)l'(+/-) + X in ee, e mu, and mu mu final states. The search is based on data collected by the D0 experiment at the Fermilab Tevatron Collider at root s = 1.96 TeV corresponding to 5.3 fb(-1) of integrated luminosity. We require two isolated leptons (electrons or muons) with the same electric charge and additional kinematic requirements. No significant excess above background is observed, and we set 95% C. L. observed (expected) upper limits on ratio of the production cross section to the standard model prediction of 6.4 (7.3) for a Higgs boson mass of 165 GeV and 13.5 (19.8) for a mass of 115 GeV

    Two-dimensional Hamiltonian systems

    Get PDF
    This survey article contains various aspects of the direct and inverse spectral problem for twodimensional Hamiltonian systems, that is, two dimensional canonical systems of homogeneous differential equations of the form Jy'(x) = -zH(x)y(x); x ∈ [0;L); 0 < L ≤ ∞; z ∈ C; with a real non-negative definite matrix function H ≥ 0 and a signature matrix J, and with a standard boundary condition of the form y1(0+) = 0. Additionally it is assumed that Weyl's limit point case prevails at L. In this case the spectrum of the canonical system is determined by its Titchmarsh-Weyl coefficient Q which is a Nevanlinna function, that is, a function which maps the upper complex half-plane analytically into itself. In this article an outline of the Titchmarsh-Weyl theory for Hamiltonian systems is given and the solution of the direct spectral problem is shown. Moreover, Hamiltonian systems comprehend the class of differential equations of vibrating strings with a non-homogenous mass-distribution function as considered by M.G. Krein. The inverse spectral problem for two{dimensional Hamiltonian systems was solved by L. de Branges by use of his theory of Hilbert spaces of entire functions, showing that each Nevanlinna function is the Titchmarsh-Weyl coefficient of a uniquely determined normed Hamiltonian. More detailed results of this connection for e.g. systems with a semibounded or discrete or finite spectrum are presented, and also some results concerning spectral perturbation, which allow an explicit solution of the inverse spectral problem in many cases

    Random Matrices close to Hermitian or unitary: overview of methods and results

    Full text link
    The paper discusses progress in understanding statistical properties of complex eigenvalues (and corresponding eigenvectors) of weakly non-unitary and non-Hermitian random matrices. Ensembles of this type emerge in various physical contexts, most importantly in random matrix description of quantum chaotic scattering as well as in the context of QCD-inspired random matrix models.Comment: Published version, with a few more misprints correcte

    Measurement of the t-channel single top quark production cross section

    Get PDF
    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb^-1 of ppbar collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14 +0.94 -0.80 pb for the t-channel and 1.05 +-0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.Comment: 7 pages, 6 figure

    Measurements of differential cross sections of Z/gamma*+jets+X events in proton anti-proton collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.Comment: Published in PLB. 11 pages, 3 figure

    Search for new fermions ("quirks") at the Fermilab Tevatron Collider

    Get PDF
    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.42.4 fb1^{-1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron ppˉp\bar{p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like {\it SU(N)} sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 ~GeV for the mass of a charged quirk with strong dynamics scale Λ\Lambda in the range from 10 keV to 1 MeV.Comment: submitted to Phys. Rev. Letter

    Measurement of the W boson mass

    Get PDF
    We present a measurement of the W boson mass in W -> ev decays using 1 fb^-1 of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W -> ev candidate events, we measure M_W = 80.401 +- 0.043 GeV. This is the most precise measurement from a single experiment.Comment: As published in PR
    corecore