1,473 research outputs found

    Radio and X-ray observations of an exceptional radio flare in the extreme z=4.72 blazar GB B1428+4217

    Full text link
    We report on the extreme behaviour of the high redshift blazar GB B1428+4217 at z=4.72. A continued programme of radio measurements has revealed an exceptional flare in the lightcurve, with the 15.2 GHz flux density rising by a factor ~3 from ~140 mJy to ~430 mJy in a rest-frame timescale of only ~4 months -- much larger than any previous flares observed in this source. In addition to new measurements of the 1.4-43 GHz radio spectrum we also present the analysis and results of a target-of-opportunity X-ray observation using XMM-Newton, made close to the peak in radio flux. Although the X-ray data do not show a flare in the high energy lightcurve, we are able to confirm the X-ray spectral variability hinted at in previous observations. GB B1428+4217 is one of several high-redshift radio-loud quasars that display a low energy break in the X-ray spectrum, probably due to the presence of excess absorption in the source. X-ray spectral analysis of the latest XMM-Newton data is shown to be consistent with the warm absorption scenario which we have hypothesized previously. Warm absorption is also consistent with the observed X-ray spectral variability of the source, in which the spectral changes can be successfully accounted-for with a fixed column density of material in which the ionization state is correlated with hardness of the underlying power-law emission.Comment: 8 pages, 5 figures, MNRAS accepte

    Interface Width and Bulk Stability: requirements for the simulation of Deeply Quenched Liquid-Gas Systems

    Full text link
    Simulations of liquid-gas systems with extended interfaces are observed to fail to give accurate results for two reasons: the interface can get ``stuck'' on the lattice or a density overshoot develops around the interface. In the first case the bulk densities can take a range of values, dependent on the initial conditions. In the second case inaccurate bulk densities are found. In this communication we derive the minimum interface width required for the accurate simulation of liquid gas systems with a diffuse interface. We demonstrate this criterion for lattice Boltzmann simulations of a van der Waals gas. When combining this criterion with predictions for the bulk stability we can predict the parameter range that leads to stable and accurate simulation results. This allows us to identify parameter ranges leading to high density ratios of over 1000. This is despite the fact that lattice Boltzmann simulations of liquid-gas systems were believed to be restricted to modest density ratios of less than 20.Comment: 5 pages, 3 figure

    Free induction decay of a superposition stored in a quantum dot

    Full text link
    We study the free evolution of a superposition initialized with high fidelity in the neutral-exciton state of a quantum dot. Readout of the state at later times is achieved by polarized photon detection, averaged over a large number of cycles. By controlling the fine-structure splitting (FSS) of the dot with a dc electric field, we show a reduction in the degree of polarization of the signal when the splitting is minimized. In analogy with the "free induction decay" observed in nuclear magnetic resonance, we attribute this to hyperfine interactions with nuclei in the semiconductor. We numerically model this effect and find good agreement with experimental studies. Our findings have implications for storage of superpositions in solid-state systems and for entangled photon pair emission protocols that require a small value of the FSS

    Different kinds of long-term variability from Cygnus X-1

    Full text link
    We present a study of the long-term variability of Cyg X-1 using data from the RXTE/ASM and the RXTE/PCA during the time between the two soft states of 1996 and 2001/2002. This period has been characterized by many short ASM flaring episodes which we have identified as "failed state transitions". The 150 d period which has been seen before and shortly after the 1996 soft state is not obviously present in the ASM rate during most of this time. Applying selection criteria from our pointed RXTE/PCA observations to exclude the flaring episodes we show that the 150 d period can indeed still be significantly detected in the hard state. Furthermore, while the ~420 d timescale associated with the flaring is reduced in the selected hard state count rate, it is still pronounced in the temporal evolution of the corresponding hardness ratios. The Ryle radio flux is also consistent with the 150 d period being present but distorted during this time.Comment: 4 pages, 6 figures, to appear in Proceedings of "X-ray Timing 2003: Rossi and Beyond", ed. P. Kaaret, F.K. Lamb, & J.H. Swan
    corecore